<u>Answer:</u> The volume of concentrated hydrochloric acid required is 16.53 mL
<u>Explanation:</u>
To calculate the volume of concentrated solution, we use the equation:

where,
are the molarity and volume of the concentrated solution
are the molarity and volume of diluted solution
We are given:
Conversion factor: 1 L = 1000 mL

Putting values in above equation, we get:

Hence, the volume of concentrated hydrochloric acid required is 16.53 mL
At STP, the volume of a gas represents the number of particles.That said, from the chemical reaction one mole of oxygen reacts with two moles of co to produce the product, CO2At STP, 3 moles of Oxygen will produce 6 moles of CO2. Hence It follows that at standard temperature and pressure, 6.0 L of CO2 will be produced. Option D.
Answer:
C. That atoms made up the smallest form of matter
Explanation:
The crux of the Dalton's atomic theory is that atoms are the smallest form of matter. He propositioned that atoms is an indivisible particle and beyond an atom, no form of matter exists.
Series of discoveries through time have greatly shaped the Dalton's atomic theory. The discovery of cathode rays by J.J Thomson in 1897 opened up the atom. Atoms were now seen to be made up of some negatively charged particles. Ernest Rutherford through his gold foil experiment proposed the nuclear model of the atom.
Answer:
25.89 × 10²³ molecules
Explanation:
Given data:
Mass of CoCl₂ = 560 g
Number of molecules present = ?
Solution:
Number of moles of CoCl₂:
Number of moles = mass/molar mass
Number of moles = 560 g/ 129.84 g/mol
Number of moles = 4.3 mol
Avogadro number:
The given problem will solve by using Avogadro number.
It is the number of atoms , ions and molecules in one gram atom of element, one gram molecules of compound and one gram ions of a substance. The number 6.022 × 10²³ is called Avogadro number.
1 mole = 6.022 × 10²³ molecules
4.3 mol × 6.022 × 10²³ molecules /1 mol
25.89 × 10²³ molecules
Answer:
Dehydration synthesis reactions build molecules up and generally require energy, while hydrolysis reactions break molecules down and generally release energy. Carbohydrates, proteins, and nucleic acids are built up and broken down via these types of reactions, although the monomers involved are different in each case.
Explanation: