Answer and Explanation:
When using simulations, it is important that the researcher knows some limitations. This is because the simulations do not behave exactly like what they represent, in addition to not presenting very important details for analysis and without approximations of what really happens with what they are representing. When modeling the synthesis of Ammonia, for example, these limitations can cause inaccuracies that will compromise the entire analysis.
Answer:
solvent (such as water, oil or isopropyl alcohol) is allowed to absorb up the paper strip. ... Different molecules run up the paper at different rates. As a result, components of the solution separate and, in this case, become visible as strips of color on the chromatography paper.
Explanation:
Hope this helps leave a heart c:
Moles of
,

Moles of acetic acid
,

Mole fraction of water :

Therefore, mole fraction of water in this solution is 0.645 .
Hence, this is the required solution.
To balance a reaction, we must say to it that the number of elements in one side is equal to the other side. For a combustion reaction such as the one given, we first need to balance the number of carbon atoms, then the hydrogen atoms and lastly the oxygen atoms.
<span>C4H10 + 13/2O2 → 4CO2 + 5H2O.</span>
Answer:
The number of atoms in 1 mole silver is also 6.022 *10^23 atoms.
Option C is correct.
Explanation:
Step 1: Data given
Mass of 1 mole silver = 107.9 grams
Step 2: Calculate the number of atoms in 1 mole of silver
To calculate the number of atoms in 1 mole, we multiply the number of Avogadro by the number of moles
Number of atoms = 1 mol * 6.022 *10^23 atoms/ mol
Number of atoms = 6.022 * 10^23 atoms
Since the number of Avogadro says there are 6.022 * 10^23 atoms per 1 mole. The number of atoms in 1 mole silver is also 6.022 *10^23 atoms.
Option C is correct.