Answer:
The answers are in the explanation
Explanation:
- Initial pH: An acid solution more dilute has a higher pH because concentration of H⁺ decreases.
- pH at the half‐equivalence point: In a titration curve. The pH at the half-equivalence point will be higher because the initial pH is higher and the equivalence point pH is the same.
- NaOH volume needed to reach the equivalence point: As the diulte solution has a higher pH, the NaOH volume you need is lower than original solution.
- pH at the equivalence point: The pH at the equivalence point will be always the same (pH = 7,0). Because is the pH where the total H⁺ of the acid were consumed.
I hope it helps!
Answer is D
Explanation: A gamma ray primarily consists of pure energy and no mass.
Answer:
Chemical reaction involves the breaking of bonds in the reactants and formation of bonds in the products. ... If a reaction is exothermic, more energy is released when the bonds of the products are formed than it takes to break the bonds of the reactants. This is the reason for temperature change during a reaction.
Explanation:
Here are just a few everyday demonstrations that temperature changes the rate of chemical reaction: Cookies bake faster at higher temperatures. Bread dough rises more quickly in a warm place than in a cool one.
Answer:
a. 174 mL
Explanation:
Let's consider the following reaction.
2 KI(aq) + Pb(NO₃)₂(aq) → 2 KNO₃(aq) + PbI₂(s)
We have 155.0 mL of a 0.112 M lead(II) nitrate solution. The moles of Pb(NO₃)₂ are:
0.1550 L × 0.112 mol/L = 0.0174 mol
The molar ratio of KI to Pb(NO₃)₂ is 2:1. The moles of KI are:
2 × 0.0174 mol = 0.0348 mol
The volume of a 0.200 M KI solution that contains 0.0348 moles is:
0.0348 mol × (1 L / 0.200 mol) = 0.174 L = 174 mL