Answer:
The mass of water is 36 g.
Explanation:
Mass of hydrogen = 4 g
Mass of water = ?
Solution:
First of all we will write the balance chemical equation:
2H₂ + O₂ → 2H₂O
Number of moles of hydrogen = mass / molar mass
Number of moles of hydrogen = 4 g/ 2 g/mol
Number of moles of hydrogen = 2 mol
Now we compare the moles of water with hydrogen from balance chemical equation.
H₂ : H₂O
2 : 2
Mass of water = moles × molar mass
Mass of water = 2 mol × 18 g/mol
Mass of water = 36 g
If the water oxygen is in excess than mass of water would be 36 g.
H3PO4 has molecular weight of approximately 98 grams per
mole. 4.50 M is equal to 4.50 mole per 1000 mL solution of H3PO4. 255 mL times
4.50 mol /1000 mL times 98 g/mol is equal to 112.455 grams. Note that I
automatically equate 1 Liter to 1000 mL since the given volume is in mL for
easier computation.
Answer:
Action given and reaction taken
Also known as
Newton's third law of motion
Explanation:
An action will be done such as bouncing a ball on the wall
- You throw the ball (Action)
- The ball bounces back (Reaction)
Hope this Helps
Answer:
When Moseley arranged the elements in the periodic table by their number of protons rather than their atomic weights, the flaws in the periodic table that had been making scientists uncomfortable for decades simply disappeared.
Explanation:
Make sure to edit so you don't get copy-writed
Answer:
Option C.
The Bohr effect describes the effect of pH on the affinity of hemoglobin for oxygen.
Explanation:
The hemoglobin is the oxygen carrying part of the blood. However, According to Christian Bohr, the binding affinity for oxygen by the hemoglobin in the blood is greatly affected by the acidity and content of carbon dioxide in the blood. As a matter of fact, they are inversely related. The more acidic the blood is, or the lower the pH of the blood, the lower the amount of oxygen that can become bonded with the hemoglobin in the blood.