A^2 - 11^2 = ( a - 11 )( a + 11 ), because we have the formula d<span>ifference of squares, a^2 - b^2 = ( a - b )( a + b );</span>
Answer:give me brainlist
Step-by-step explanation:
Answer:
Table 2
Step-by-step explanation:
We have the tables:
<u>Table 1:</u>
x: 1 2 3 4
y: 2 4 6 8
<u>Table 2:</u>
x: 1 2 3 4
y: 2 4 8 16
<u>Table 3:</u>
x: 1 2 3 4
y: 2 4 7 11
<u>Table 4:</u>
x: 1 2 3 4
y: 2 4 6 10
An exponential growth data set will show a common ratio between y values. Let's look at each of the ratios from each table.
<u>Table 1:</u>
8/6 = 4/3
6/4 = 3/2
Already, we can see that 4/3 ≠ 3/2, which means that this doesn't have a common ratio. So Table 1 is wrong.
<u>Table 2:</u>
16/8 = 2
8/4 = 2
4/2 = 2
The common ratio here is 2, so we know this is correct.
<u>Table 3:</u>
11/7 = 1.57
7/4 = 1.75
Again, we can see that 1/57 ≠ 1.75, so this is wrong.
<u>Table 4:</u>
10/6 = 1.67
6/4 = 1.5
Again, there is no common ratio here, so this is wrong.
The answer is thus Table 2.
Answer:
17 hours
Step-by-step explanation:
From the above question,
Anthony is practicing 4 days in a week
Hence
The number of hours he practices in the morning for 4 days =
1.75 hours × 4
= 7 hours
The number of hours he practices in the evening for 4 days =
2.5 hours × 4
= 10 hours
Therefore, the total number of hours he practices this week
= 7 hours + 10 hours
= 17 hours
Let h represent the height of the trapezoid, the perpendicular distance between AB and DC. Then the area of the trapezoid is
Area = (1/2)(AB + DC)·h
We are given a relationship between AB and DC, so we can write
Area = (1/2)(AB + AB/4)·h = (5/8)AB·h
The given dimensions let us determine the area of ∆BCE to be
Area ∆BCE = (1/2)(5 cm)(12 cm) = 30 cm²
The total area of the trapezoid is also the sum of the areas ...
Area = Area ∆BCE + Area ∆ABE + Area ∆DCE
Since AE = 1/3(AD), the perpendicular distance from E to AB will be h/3. The areas of the two smaller triangles can be computed as
Area ∆ABE = (1/2)(AB)·h/3 = (1/6)AB·h
Area ∆DCE = (1/2)(DC)·(2/3)h = (1/2)(AB/4)·(2/3)h = (1/12)AB·h
Putting all of the above into the equation for the total area of the trapezoid, we have
Area = (5/8)AB·h = 30 cm² + (1/6)AB·h + (1/12)AB·h
(5/8 -1/6 -1/12)AB·h = 30 cm²
AB·h = (30 cm²)/(3/8) = 80 cm²
Then the area of the trapezoid is
Area = (5/8)AB·h = (5/8)·80 cm² = 50 cm²