400 Imperial pints are less than 100 Imperial gallons,
400 pints = 50 gallons.
Answer:

Step-by-step explanation:
This problem can be solved by using the expression for the Volume of a solid with the washer method
![V=\pi \int \limit_a^b[R(x)^2-r(x)^2]dx](https://tex.z-dn.net/?f=V%3D%5Cpi%20%5Cint%20%5Climit_a%5Eb%5BR%28x%29%5E2-r%28x%29%5E2%5Ddx)
where R and r are the functions f and g respectively (f for the upper bound of the region and r for the lower bound).
Before we have to compute the limits of the integral. We can do that by taking f=g, that is

there are two point of intersection (that have been calculated with a software program as Wolfram alpha, because there is no way to solve analiticaly)
x1=0.14
x2=8.21
and because the revolution is around y=-5 we have

and by replacing in the integral we have
![V=\pi \int \limit_{x1}^{x2}[(lnx+5)^2-(\frac{1}{2}x+3)^2]dx\\](https://tex.z-dn.net/?f=V%3D%5Cpi%20%5Cint%20%5Climit_%7Bx1%7D%5E%7Bx2%7D%5B%28lnx%2B5%29%5E2-%28%5Cfrac%7B1%7D%7B2%7Dx%2B3%29%5E2%5Ddx%5C%5C)
and by evaluating in the limits we have

Hope this helps
regards
First expand the parentheses:-
96x + 18 - 6 + 8x + 25 = 0
104x = -18 + 6 - 25 = -37
x = -37 / 104 = -0.3558
Volume is cubed. If the dimensions are doubled, cube the scale factor:
2^3 = 8
The volume will increase by a scale of 8.
The new volume would be 97 x 8 = 776 ft^3
Answer:
y=5(x-3)^2+2
Step-by-step explanation:
You plug the point into f(x)=a(x-3)^2+2... that already has already been solved for the vertex that you want. Then you swap it out for the solution you have solved for.