Ammonium chloride is a white solid that breaks down when heated and produces ammonia and hydrogen chloride.
<h3>What is the reversible reaction?</h3>
A reversible reaction is a reaction in which the conversion of reactants to products and products to reactants occur at the same time. In the above example, the chemical shows a reversible reaction because it moves both forward and backward direction. In reversible reaction, equal amount of reactant is converted into product and product into reactant.
So we can conclude that Ammonium chloride is a chemical that represents a reversible reaction.
Learn more about reaction here: brainly.com/question/11231920
#SPJ1
Answer:
The equilibrium concentration of CH₃OH is 0.28 M
Explanation:
For the reaction: CO (g) + 2H₂(g) ↔ CH₃OH(g)
The equilibrium constant (Keq) is given for the following expresion:
Keq=
=14.5
Where (CH3OH), (CO) and (H2) are the molar concentrations of each product or reactant.
We have:
(CH3OH)= ?
(CO)= 0.15 M
(H2)= 0.36 M
So, we only have to replace the concentrations in the equilibrium constant expression to obtain the missing concentration we need:
14.5= 
14.5 x (0.15 M) x
= (CH₃OH)
0.2818 M = (CH₃OH)
Atomic mass of boron = 10.81
<h3>What are Isotopes?</h3>
Isotopes are variants of a particular element in which they have the same number of protons but differ in the number of neutrons in the atom.
So, here as we said we have isotopes which weigh 10.01 and 11.01.
Given,
relative abundance of B-10 = 10.1 amu
relative abundance of B- 11 = 11.01 amu
percentage of B-10 = 20%
percentage of B-11 = 80%
Then the relative atomic mass depends upon the relative abundance of various isotopes of that particular element. Suppose an element consists of two isotopes and average atomic mass is equal to
(Relativeabundance(1)×Atomicmass(1)+Relativeabundance(2)×Atomicmass(2)) / (Relativeabundance(1)+Relativeabundance(2))
Atomic mass of boron = (20 × 10.01 + 80 × 11.01) / (80 + 20 )
= 1081/100
= 10.81
To learn more about atomic mass from the given link
brainly.com/question/3187640
#SPJ4