Answer:
- Work done is maximum when the movement of object is in line and direction of force.
OR
- Work done is maximum, when displacement takes place along the direction of force.
- Work done is given by the equation
W = F.S
<em> W = F. S cos Θ</em>
<em>When cos Θ = 0° ; cos 0 = 1</em>
Answer:
yo they deleted my answer. The answer is 0N
Explanation:
so when two forces pull on an object from opposite sides with the same force (in this case its 20N), then the object is in equilibrium at 0N.
So its clear that there is one person on the the opposite side.
SOOO generally<u>: (left or down) would be considered </u><u>negative</u><u> in an equation. And the other person (right or up) would be considered </u><u>positive</u><u>.</u> So if both forces are the same numbers on opposite sides then the answer is 0 (if you add both of them).
<em>0 is the number of equilibrium.</em>
OK, so the equation would be -20N + 20N and then badda bing badda boom viola, the answer: 0N
thanks for coming to my TED talk. I hope they don't delete this answer.
D. All of these, they’re all part of scientific inquiry
Answer:
NO, 1. is stocks
2. is also stocks
bouquit GARNI IS NUMBER 3
NUMBER 4 IS ACID PRODUCTS
number 5 is brown stock
Explanation:
stocks are bones
Answer:

The Required horizontal force is 230.04N
Explanation:
Since the velocity is constant so acceleration is zero; a=0
Now the horizontal force required to move the pickup is equal to the frictional force.

where:
F_{Hn} is the required Force
u is the friction coefficient
m is the mass
g is gravitational acceleration=9.8m/s^2
Eq (1)
Now, weight increases by 42% and friction coefficient decreases by 19%
New weight=(1.42*m*g) and new friction coefficient=0.81u
Eq (2)
Divide Eq(2) and Eq (1)

The Required horizontal force is 230.04N