1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kotykmax [81]
3 years ago
7

Convert 15 litre into cubic metre​

Physics
1 answer:
atroni [7]3 years ago
5 0

Answer:

0.015m^3

Explanation:

1 m^3 = 1000 liters

x m^3 = 15 liters

Cross multiply

xm^3 x 1000 l = 15 l

Divide both sides by 1000

xm^3 x1000/1000 = 15/1000

xm^3 = 0.015m^3

Therefore 15 liter = 0.015m^3

You might be interested in
At a certain location, wind is blowing steadily at 9 m/s. Determine the mechanical energy of air per unit mass and the power gen
Misha Larkins [42]

Answer:

  1. The specific mechanical energy of the air in the specific location is 40.5 J/kg.
  2. The power generation potential of the wind turbine at such place is of 2290 kW
  3. The actual electric power generation is 687 kW

Explanation:

  1. The mechanical energy of the air per unit mass is the specific kinetic energy of the air that is calculated using: \frac{1}{2} V^2 where V is the velocity of the air.
  2. The specific kinetic energy would be: \frac{1}{2}(9\frac{m}{s})^2=40.5\frac{m^2}{s^2}=40.5\frac{m^2 }{s^2}\frac{kg}{kg}=40.5\frac{N*m }{kg}=40.5\frac{J}{kg}.
  3. The power generation of the wind turbine would be obtained from the product of the mechanical energy of the air times the mass flow that moves the turbine.
  4. To calculate mass flow it is required first to calculate the volumetric flow. To calculate the volumetric flow the next expression would be: \frac{V\pi D_{blade}^2}{4} =\frac{9\frac{m}{s}\pi(80m)^2}{4} =45238.9\frac{m^3}{s}
  5. Then the mass flow is obtain from the volumetric flow times the density of the air: m_{flow}=1.25\frac{kg}{m^3}45238.9\frac{m^3}{s}=56548.7\frac{kg}{s}
  6. Then, the Power generation potential is: 40.5\frac{J}{kg} 56548.7\frac{kg}{s} =2290221W=2290.2kW
  7. The actual electric power generation is calculated using the definition of efficiency:\eta=\frac{E_P}{E_I}}, where η is the efficiency, E_P is the energy actually produced and, E_I is the energy input. Then solving for the energy produced: E_P=\eta*E_I=0.30*2290kW=687kW
6 0
2 years ago
An electron and a proton each have a thermal kinetic energy of 3kBT/2. Calculate the de Broglie wavelength of each particle at a
S_A_V [24]

Answer:

Given:

Thermal Kinetic Energy of an electron, KE_{t} = \frac{3}{2}k_{b}T

k_{b} = 1.38\times 10^{- 23} J/k = Boltzmann's constant

Temperature, T = 1800 K

Solution:

Now, to calculate the de-Broglie wavelength of the electron, \lambda_{e}:

\lambda_{e} = \frac{h}{p_{e}}

\lambda_{e} = \frac{h}{m_{e}{v_{e}}              (1)

where

h = Planck's constant = 6.626\times 10^{- 34}m^{2}kg/s

p_{e} = momentum of an electron

v_{e} = velocity of an electron

m_{e} = 9.1\times 10_{- 31} kg = mass of electon

Now,

Kinetic energy of an electron = thermal kinetic energy

\frac{1}{2}m_{e}v_{e}^{2} = \frac{3}{2}k_{b}T

}v_{e} = \sqrt{2\frac{\frac{3}{2}k_{b}T}{m_{e}}}

}v_{e} = \sqrt{\frac{3\times 1.38\times 10^{- 23}\times 1800}{9.1\times 10_{- 31}}}

v_{e} = 2.86\times 10^{5} m/s                    (2)

Using eqn (2) in (1):

\lambda_{e} = \frac{6.626\times 10^{- 34}}{9.1\times 10_{- 31}\times 2.86\times 10^{5}} = 2.55 nm

Now, to calculate the de-Broglie wavelength of proton, \lambda_{e}:

\lambda_{p} = \frac{h}{p_{p}}

\lambda_{p} = \frac{h}{m_{p}{v_{p}}                             (3)

where

m_{p} = 1.6726\times 10_{- 27} kg = mass of proton

v_{p} = velocity of an proton

Now,

Kinetic energy of a proton = thermal kinetic energy

\frac{1}{2}m_{p}v_{p}^{2} = \frac{3}{2}k_{b}T

}v_{p} = \sqrt{2\frac{\frac{3}{2}k_{b}T}{m_{p}}}

}v_{p} = \sqrt{\frac{3\times 1.38\times 10^{- 23}\times 1800}{1.6726\times 10_{- 27}}}

v_{p} = 6.674\times 10^{3} m/s                               (4)                    

Using eqn (4) in (3):

\lambda_{p} = \frac{6.626\times 10^{- 34}}{1.6726\times 10_{- 27}\times 6.674\times 10^{3}} = 5.94\times 10^{- 11} m = 0.0594 nm

7 0
3 years ago
Natural history research involves ____ unobsevable and unrepeatable past events.
Tanzania [10]
B verifying is the answer
4 0
3 years ago
A certain cloud contains 220 water droplets per cubic centimeter. If 1cubic meter = 1,000,000cubic centimeters, how many drops a
lianna [129]
Wouldn't you just have to multiply 220 by 1,000,000? That would mean there are 220,000,000 water droplets in one cubic of the cloud.
3 0
2 years ago
An intergalactic rock star bangs his drum every 1.50 s. A person on earth measures that the time between beats is 2.70 s. How fa
sineoko [7]

Answer:

v = 83.1 % of speed of light

Explanation:

given,

T_e is the earth time = 2.7 s

T_s is the ship time = 1.5 s

we know,

T_s = T_e \times \gamma

where c is the speed of light

v is the speed of the rock star moving

T_s = T_e\times \sqrt{1-\dfrac{v^2}{c^2}}

1.5= 2.7\times \sqrt{1-\dfrac{v^2}{c^2}}

\sqrt{1-\dfrac{v^2}{c^2}} =0.556

squaring both side

1-\dfrac{v^2}{c^2}=0.3086

v^2=0.6914c^2

v = 0.831 c

v = 83.1 % of speed of light

7 0
2 years ago
Other questions:
  • Anita and Nick are playing tug-of-war near a mud puddle. They are each holding on to an end of a taut rope that has a knot exact
    5·1 answer
  • A disturbance sends ripples across water in a tub.
    5·2 answers
  • A 10 kg ball has a momentum of 40 kg.m/s.what is the ball's speed?
    8·1 answer
  • The fast server in women's tennis is Venus Williams, who recorded a serve of 130   (209  ) in 2007.
    15·1 answer
  • In what unit do we measure force? in physics​
    5·1 answer
  • Define personal health.<br>​
    12·2 answers
  • Suppose the coefficient of static friction between a quarter and the back wall of a rocket car is 0.383. At what minimum rate wo
    11·1 answer
  • Find the magnitude of the sum<br> of these two vectors:<br><br> 101 m<br> 60.0 °<br> 85.0 m
    14·1 answer
  • A snake slithered across the sidewalk in between two sign posts. At the first sign post his speed was
    13·1 answer
  • The safest way to view an image of the sun is to use.
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!