It’s an assortment of compound molecules
<u>Answer:</u> The Young's modulus for the wire is 
<u>Explanation:</u>
Young's Modulus is defined as the ratio of stress acting on a substance to the amount of strain produced.
The equation representing Young's Modulus is:

where,
Y = Young's Modulus
F = force exerted by the weight = 
m = mass of the ball = 10 kg
g = acceleration due to gravity = 
l = length of wire = 2.6 m
A = area of cross section = 
r = radius of the wire =
(Conversion factor: 1 m = 1000 mm)
= change in length = 1.99 mm = 
Putting values in above equation, we get:

Hence, the Young's modulus for the wire is 
The rule that is used to get the strength of magnetic field at the center of solenoid (B) is:
B = <span>µ x n x I where:
</span>µ is the permeability of the medium where the solenoid is based. In this problem, the medium is air which means that µ = <span>µ </span><span>o = 4 pi x 10^-7 Tm/A
</span>I is the current passing (I = 4 amperes)
n is the number of turns per unit length (5000 turns)
Substituting in the mentioned equation, we find that:
B = 4 x 3.14 x 10^-7 x 5000 x 4 = 25.132 mT
The tensile stress of the wire supporting 2 kg mass is determined as 6.1 x 10⁷ N/m².
<h3>
Tensile stress of the wire</h3>
The tensile stress of the wire is calculated as follows;
σ = F/A
where;
A = πr² = πD²/4
where;
A = π x (0.64 x 10⁻³)²/4
A = 3.22 x 10⁻⁷ m²
σ = F/A = (mg)/A = (2 x 9.8)/( 3.22 x 10⁻⁷)
σ = 6.1 x 10⁷ N/m²
Learn more about tensile stress here: brainly.com/question/25748369
#SPJ1