To solve this problem it is necessary to apply the concepts related to the adiabatic process that relate the temperature and pressure variables
Mathematically this can be determined as

Where
Temperature at inlet of turbine
Temperature at exit of turbine
Pressure at exit of turbine
Pressure at exit of turbine
The steady flow Energy equation for an open system is given as follows:


Where,
m = mass
= mass at inlet
= Mass at outlet
= Enthalpy at inlet
= Enthalpy at outlet
W = Work done
Q = Heat transferred
= Velocity at inlet
= Velocity at outlet
= Height at inlet
= Height at outlet
For the insulated system with neglecting kinetic and potential energy effects


Using the relation T-P we can find the final temperature:



From this point we can find the work done using the value of the specific heat of the air that is 1,005kJ / kgK
So:




Therefore the maximum theoretical work that could be developed by the turbine is 678.248kJ/kg
The distance between
your
initial position and your
final position is displacement. Often denoted by

or Δ
Answer:
A substance in its liquid state is closer to the density of its solid phase than the density of its gaseous phase.
Explanation:
For a substance in its liquid state we can expect the density of the substance more closer to the density of its solid state than its gaseous state because the the inter-molecular space is much close near to incompressible in the liquid state and the the inter-molecular force of attraction is much higher as compared to gaseous state.
In contrast to the molecular properties in liquid state gases have almost negligible inter-molecular force of attraction and very huge inter-molecular spacing which makes it well compressible.
;Net force = mass of the body × acceleration of the body due to the net force
; 5000 = 2500 a...then divide both sides by 2500
; acceleration(a) = 2 m/s^2
<span>B. It stays the same</span>