Monday: 3 1/4 miles
Tuesday: (3 1/4)(2/3) = 2 1/6 miles
Wednesday: (2 1/6)(2) = 4 1/3 miles
Thursday: (4 1/3)(3/4) = 3 1/4 miles
Add them all up: 13 miles
She has not reached her goal, she needs to ride her bike 2 more miles to reach her goal.
2. 27
3. 13
4. 35
6. 22
7. 60
I was unable to help with 5 because of the plot box!! Hope this helps
Answer:
Option E is correct.
The expected number of meals expected to be served on Wednesday in week 5 = 74.2
Step-by-step Explanation:
We will use the data from the four weeks to obtain the fraction of total days that number of meals served at lunch on a Wednesday take and then subsequently check the expected number of meals served at lunch the next Wednesday.
Week
Day 1 2 3 4 | Total
Sunday 40 35 39 43 | 157
Monday 54 55 51 59 | 219
Tuesday 61 60 65 64 | 250
Wednesday 72 77 78 69 | 296
Thursday 89 80 81 79 | 329
Friday 91 90 99 95 | 375
Saturday 80 82 81 83 | 326
Total number of meals served at lunch over the 4 weeks = (157+219+250+296+329+375+326) = 1952
Total number of meals served at lunch on Wednesdays over the 4 weeks = 296
Fraction of total number of meals served at lunch over four weeks that were served on Wednesdays = (296/1952) = 0.1516393443
Total number of meals expected to be served in week 5 = 490
Number of meals expected to be served on Wednesday in week 5 = 0.1516393443 × 490 = 74.3
Checking the options,
74.3 ≈ 74.2
Hence, the expected number of meals expected to be served on Wednesday in week 5 = 74.2
Hope this Helps!!!
The easiest terms to check are the first (8x)(2x²) = 16x³ and the last (-5)(-6) = 30. This check eliminates the first choice. The remaining choices differ only in the sign and coefficient of the squared term, so that is the one we need to find.
The squared term will be the sum of the products of factors whose degrees total 2:
(8x)(-5x) + (-5)(2x²) = -40x² -10x² = -50x²
The appropriate choice is
16x³ -50x² -23x +30
Answer:
Option (c) is correct.
68% of the data points lie between 10 and 18.
Step-by-step explanation:
Given : a normal distribution with a standard deviation of 4 and a mean of 14
We have to choose the sentence that correctly describes a data set that follows a normal distribution with a standard deviation of 4 and a mean of 14.
Since, given 68% data.
We know mean of data lies in middle.
And standard deviation is distribute equally about the mean that is 50% of values less than the mean and 50% greater than the mean.
So, 68% of data lies
mean - standard deviation = 14 - 4 = 10
mean + standard deviation = 14 + 4 = 18
So, 68% of the data points lie between 10 and 18.