All except for C. And it's good for the environment.
Answer:
a ladybug I hope this helps you
Answer:
Explanation:
Given parameters:
Mass of aluminium oxide = 3.87g
Mass of water = 5.67g
Unknown:
Limiting reactant = ?
Solution:
The limiting reactant is the reactant in short supply in a chemical reaction. We need to first write the chemical equation and convert the masses given to the number of moles.
Using the number of moles, we can ascertain the limiting reactants;
Al₂O₃ + 3H₂O → 2Al(OH)₃
Number of moles;
Number of moles = 
molar mass of Al₂O₃ = (2x27) + 3(16) = 102g/mole
number of moles =
= 0.04mole
molar mass of H₂O = 2(1) + 16 = 18g/mole
number of moles =
= 0.32mole
From the reaction equation;
1 mole of Al₂O₃ reacted with 3 moles of H₂O
0.04 mole of Al₂O₃ will react with 3 x 0.04 mole = 0.12 mole of H₂O
But we were given 0.32 mole of H₂O and this is in excess of amount required.
This shows that Al₂O₃ is the limiting reactant
Answer:
A)
<u>4, 7, 4, 6</u>
B)
<u>12 moles</u>
Explanation:

__↑______↑
8.00 mol | 14.00 mol
________________

You can turn this into a system of variables which are solvable.
To do this, create variables for the coefficients of each compound in the reaction respectively.

Because to be balanced, the count of atoms in each element of the compound correspond to the coefficient of the variable in that compound so that the count of the left (reactant) side is set equal to the right (product) side.
a corresponds to the coefficient of the first compound, b corresponds to the coefficient of the second compound, c corresponds to the coefficient of the third compound, and d corresponds to the coefficient of the fourth compound.
(Reactant = Product)
Reactant: 1a [N] Product: 1c.
Reactant: 3a [H] Product: 2d.
Reactant: 2b [O] Product: 2c + 1d.
Thus the system is:
1a = 1c
3a = 2d
2b = 2c + 1d.
Then just use the substitution methods to solve.