Mass, if you know what element you are working with.
Answer:
B. A precipitate will form since Q > Ksp for calcium oxalate
Explanation:
Ksp of CaC₂O₄ is:
CaC₂O₄(s) ⇄ Ca²⁺ + C₂O₄²⁻
Where Ksp is defined as the product of concentrations of Ca²⁺ and C₂O₄²⁻ in equilibrium:
Ksp = [Ca²⁺][C₂O₄²⁻] = 2.27x10⁻⁹
In the solution, the concentration of calcium ion is 3.5x10⁻⁴M and concentration of oxalate ion is 2.33x10⁻⁴M.
Replacing in Ksp formula:
[3.5x10⁻⁴M][2.33x10⁻⁴M] = 8.155x10⁻⁸. This value is reaction quotient, Q.
If Q is higher than Ksp, the ions will produce the precipitate CaC₂O₄ until [Ca²⁺][C₂O₄²⁻] = Ksp.
Thus, right answer is:
<em>B. A precipitate will form since Q > Ksp for calcium oxalate</em>
<em></em>
Answer:
what kind of class u in like dam
Explanation:
Answer:
Conditions are optimal for upwelling along the coast when winds blow along the shore. Winds blowing across the ocean surface push water away. Water then rises up from beneath the surface to replace the water that was pushed away. This process is known as “upwelling.”
Explanation:
Answer:
0. 414
Explanation:
Octahedral interstitial lattice sites.
Octahedral interstitial lattice sites are in a plane parallel to the base plane between two compact planes and project to the center of an elementary triangle of the base plane.
The octahedral sites are located halfway between the two planes. They are vertical to the locations of the spheres of a possible plane. There are, therefore, as many octahedral sites as there are atoms in a compact network.
The Octahedral interstitial void ratio range is 0.414 to 0.732. Thus, the minimum cation-to-anion radius ratio for an octahedral interstitial lattice site is 0. 414.