Answer:
When
and
:

Step-by-step explanation:
-8ab can be seen as -8×a×b. Insert the given values:

Simplify multiplication from left to right:

Insert and solve:

:Done
<span> 7x+2y=5;13x+14y=-1 </span>Solution :<span><span> {x,y} = {1,-1}</span>
</span>System of Linear Equations entered :<span><span> [1] 7x + 2y = 5
</span><span> [2] 13x + 14y = -1
</span></span>Graphic Representation of the Equations :<span> 2y + 7x = 5 14y + 13x = -1
</span>Solve by Substitution :
// Solve equation [2] for the variable y
<span> [2] 14y = -13x - 1
[2] y = -13x/14 - 1/14</span>
// Plug this in for variable y in equation [1]
<span><span> [1] 7x + 2•(-13x/14-1/14) = 5
</span><span> [1] 36x/7 = 36/7
</span><span> [1] 36x = 36
</span></span>
// Solve equation [1] for the variable x
<span><span> [1] 36x = 36</span>
<span> [1] x = 1</span> </span>
// By now we know this much :
<span><span> x = 1</span>
<span> y = -13x/14-1/14</span></span>
<span>// Use the x value to solve for y
</span>
<span> y = -(13/14)(1)-1/14 = -1 </span>Solution :<span><span> {x,y} = {1,-1}</span>
<span>
Processing ends successfully</span></span>
Answer: Do you have the original ration so we can simplify it then??
Step-by-step explanation:
SA=2(lw+wh+lh) This is the formula for finding the surface area of a rectangular prism, where SA is surface area, l is length, w is width, and h is height.
208=2(lw+wh+lh)
104=lw+wh+lh Here, I divided both sides by 2 to get ride of the 2.
Now, I used prime factorization to find out all the prime factors of 104, which are 2, 2, 2, and 13. Since rectangular prisms only have 3 dimensions, I needed to combine two of the prime factors. In this case, I can either combine 2 of the 2s to get 2, 4, and 13 or I can combine 13 with one of the 2s to get 26, 2, and 2.
If my dimensions were 2, 4, and 13...
my surface area would be 172 sq cm.
If my dimensions were 2, 2, and 26...
my surface area would be 208 sq cm.
Hence, the width of the rectangular prism when the surface area is 208 square centimeters can be either 2 or 26.