1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
AleksandrR [38]
3 years ago
7

In this problem you will use undetermined coefficients to solve the nonhomogeneous equation y′′+4y′+3y=8te^−t+6e^−t−(9t+6)

Mathematics
1 answer:
Luden [163]3 years ago
7 0

We're given the ODE,

<em>y''</em> + 4<em>y'</em> + 3<em>y</em> = 8<em>t</em> exp(-<em>t </em>) + 6 exp(-<em>t</em> ) - (9<em>t</em> + 6)

(where I denote exp(<em>x</em>) = <em>eˣ </em>)

First determine the characteristic solution:

<em>y''</em> + 4<em>y'</em> + 3<em>y</em> = 0

has characteristic equation

<em>r</em> ² + 4<em>r</em> + 3 = (<em>r</em> + 1) (<em>r</em> + 3) = 0

with roots at <em>r</em> = -1 and <em>r</em> = -3, so the characteristic solution is

<em>y</em> = <em>C</em>₁ exp(-<em>t</em> ) + <em>C</em>₂ exp(-3<em>t</em> )

For the non-homogeneous equation, assume two ansatz solutions

<em>y</em>₁ = (<em>at</em> ² + <em>bt</em> + <em>c</em>) exp(-<em>t </em>)

and

<em>y</em>₂ = <em>at</em> + <em>b</em>

<em />

• <em>y''</em> + 4<em>y'</em> + 3<em>y</em> = 8<em>t</em> exp(-<em>t </em>) + 6 exp(-<em>t</em> ) … … … [1]

Compute the derivatives of <em>y</em>₁ :

<em>y</em>₁ = (<em>at</em> ² + <em>bt</em> + <em>c</em>) exp(-<em>t </em>)

<em>y</em>₁' = (2<em>at</em> + <em>b</em>) exp(-<em>t </em>) - (<em>at</em> ² + <em>bt</em> + <em>c</em>) exp(-<em>t </em>)

… = (-<em>at</em> ² + (2<em>a</em> - <em>b</em>) <em>t</em> + <em>b</em> - <em>c</em>) exp(-<em>t </em>)

<em>y</em>₁'' = (-2<em>at</em> + 2<em>a</em> - <em>b</em>) exp(-<em>t </em>) - (-<em>at</em> ² + (2<em>a</em> - <em>b</em>) <em>t</em> + <em>b</em> - <em>c</em>) exp(-<em>t </em>)

… = (<em>at</em> ² + (<em>b</em> - 4<em>a</em>) <em>t</em> + 2<em>a</em> - 2<em>b</em> + <em>c</em>) exp(-<em>t</em> )

Substitute them into the ODE [1] to get

→   [(<em>at</em> ² + (<em>b</em> - 4<em>a</em>) <em>t</em> + 2<em>a</em> - 2<em>b</em> + <em>c</em>) + 4 (-<em>at</em> ² + (2<em>a</em> - <em>b</em>) <em>t</em> + <em>b</em> - <em>c</em>) + 3 (<em>at</em> ² + <em>bt</em> + <em>c</em>)] exp(-<em>t</em> ) = 8<em>t</em> exp(-<em>t </em>) + 6 exp(-<em>t</em> )

(<em>at</em> ² + (<em>b</em> - 4<em>a</em>) <em>t</em> + 2<em>a</em> - 2<em>b</em> + <em>c</em>) + 4 (-<em>at</em> ² + (2<em>a</em> - <em>b</em>) <em>t</em> + <em>b</em> - <em>c</em>) + 3 (<em>at</em> ² + <em>bt</em> + <em>c</em>) = 8<em>t</em> + 6

4<em>at</em> + 2<em>a</em> + 2<em>b</em> = 8<em>t</em> + 6

→   4<em>a</em> = 8   and   2<em>a</em> + 2<em>b</em> = 6

→   <em>a</em> = 2   and   <em>b</em> = 1

→   <em>y</em>₁ = (2<em>t</em> ² + <em>t </em>) exp(-<em>t </em>)

(Note that we don't find out anything about <em>c</em>, but that's okay since it would have gotten absorbed into the first characteristic solution exp(-<em>t</em> ) anyway.)

• <em>y''</em> + 4<em>y'</em> + 3<em>y</em> = -(9<em>t</em> + 6) … … … [2]

Compute the derivatives of <em>y</em>₂ :

<em>y</em>₂ = <em>at</em> + <em>b</em>

<em>y</em>₂' = <em>a</em>

<em>y</em>₂'' = 0

Substitute these into [2] :

4<em>a</em> + 3 (<em>at</em> + <em>b</em>) = -9<em>t</em> - 6

3<em>at</em> + 4<em>a</em> + 3<em>b</em> = -9<em>t</em> - 6

→   3<em>a</em> = -9   and   4<em>a</em> + 3<em>b</em> = -6

→   <em>a</em> = -3   and   <em>b</em> = 2

→   <em>y</em>₂ = -3<em>t</em> + 2

Then the general solution to the original ODE is

<em>y(t)</em> = <em>C</em>₁ exp(-<em>t</em> ) + <em>C</em>₂ exp(-3<em>t</em> ) + (2<em>t</em> ² + <em>t </em>) exp(-<em>t </em>) - 3<em>t</em> + 2

Use the initial conditions <em>y</em> (0) = 2 and <em>y'</em> (0) = 2 to solve for <em>C</em>₁ and <em>C</em>₂ :

<em>y</em> (0) = <em>C</em>₁ + <em>C</em>₂ + 2 = 2

→   <em>C</em>₁ + <em>C</em>₂ = 0 … … … [3]

<em>y'(t)</em> = -<em>C</em>₁ exp(-<em>t</em> ) - 3<em>C</em>₂ exp(-3<em>t</em> ) + (-2<em>t</em> ² + 3<em>t</em> + 1) exp(-<em>t </em>) - 3

<em>y'</em> (0) = -<em>C</em>₁ - 3<em>C</em>₂ + 1 - 3 = 2

→   <em>C</em>₁ + 3<em>C</em>₂ = -4 … … … [4]

Solve equations [3] and [4] to get <em>C</em>₁ = 2 and <em>C</em>₂ = -2. Then the particular solution to the initial value problem is

<em>y(t)</em> = -2 exp(-3<em>t</em> ) + (2<em>t</em> ² + <em>t</em> + 2) exp(-<em>t </em>) - 3<em>t</em> + 2

You might be interested in
Solve for a. <br><br><br> ab + c = d
Inga [223]
It is the first one I believe
7 0
2 years ago
Question <br> 7 - (-3)=<br> PLEASE HELP ME!!!
Roman55 [17]

Answer:

10

Step-by-step explanation:

7-(-3)

=7+3

=10

Hope this is helpful

7 0
3 years ago
Read 2 more answers
Bob,Cal,and Pete each made a stack of baseball cards.Bob's stack was 0.2 meter high.Cal's stack was 0.24 meter high.Pete's stack
AlekseyPX

Answer:

0.24 > 0.18

Step-by-step explanation:

Given that,

Bob's stack = 0.2m

Cal's stack = 0.24m

Pete's stack = 0.18m

To find?

A number sentence.

<em>A simple sentence is a string/collection of words that contain a subject and a verb whereas a number sentence is a sentence that consist of </em><em>mathematical operation</em><em> like +, -, /, * together with an equality such as =, <, >, and like a sentence it also tell a fact.</em>

<em> </em>So, the number sentence that compares cal's stack of cards to Pete's stack is

<h2>0.24 > 0.18</h2>

<em />

<em />

<em>  </em>

6 0
3 years ago
Read 2 more answers
Which of the following functions will have a graph with an axis of symmetry at x=1 and an intercept at the origin?
zlopas [31]
I think the correct answer is b
4 0
3 years ago
I NEED THE ANSWER ASAP!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!<br><br><br><br><br> 1/7-3(3/7x-2/7)
melomori [17]

Step-by-step explanation:

x in (-oo:+oo)

1/7-(3*((3/7)*x-(2/7))) = 0

1/7-3*((3/7)*x-2/7) = 0

1/7-3*(3/7*x-2/7) = 0

(-3*7*(3/7*x-2/7))/7+1/7 = 0

1-3*7*(3/7*x-2/7) = 0

7-9*x = 0

(7-9*x)/7 = 0

(7-9*x)/7 = 0 // * 7

7-9*x = 0

7-9*x = 0 // - 7

-9*x = -7 // : -9

x = -7/(-9)

x = 7/9

x = 7/9

6 0
3 years ago
Read 2 more answers
Other questions:
  • Which type of cross section is formed when the cone is intersected by a plane containing the axis of rotation?
    7·1 answer
  • I need the answers to numbers 18 and 20
    8·2 answers
  • Write the equation of a line in slope intercept form that contains the points (2,4) and (4,12)​
    13·2 answers
  • 3.) Evaluate when y = -6<br> (y)2 + 2y + 5
    13·1 answer
  • Is the following relationship a function?
    5·2 answers
  • Hi ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
    15·1 answer
  • Choose yes or no tell if each quadrilateral always has all sides equal in length and all angles
    13·1 answer
  • How many possible lunches can be made if there are 3 choices for entree and 4 choices for drink?
    8·1 answer
  • In a school with 400 students, a random sample of 40 students were asked which fruit is their favorite. Their responses are show
    12·1 answer
  • What is the asymptote of the following function: Y = e^x-x
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!