1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
AleksandrR [38]
2 years ago
7

In this problem you will use undetermined coefficients to solve the nonhomogeneous equation y′′+4y′+3y=8te^−t+6e^−t−(9t+6)

Mathematics
1 answer:
Luden [163]2 years ago
7 0

We're given the ODE,

<em>y''</em> + 4<em>y'</em> + 3<em>y</em> = 8<em>t</em> exp(-<em>t </em>) + 6 exp(-<em>t</em> ) - (9<em>t</em> + 6)

(where I denote exp(<em>x</em>) = <em>eˣ </em>)

First determine the characteristic solution:

<em>y''</em> + 4<em>y'</em> + 3<em>y</em> = 0

has characteristic equation

<em>r</em> ² + 4<em>r</em> + 3 = (<em>r</em> + 1) (<em>r</em> + 3) = 0

with roots at <em>r</em> = -1 and <em>r</em> = -3, so the characteristic solution is

<em>y</em> = <em>C</em>₁ exp(-<em>t</em> ) + <em>C</em>₂ exp(-3<em>t</em> )

For the non-homogeneous equation, assume two ansatz solutions

<em>y</em>₁ = (<em>at</em> ² + <em>bt</em> + <em>c</em>) exp(-<em>t </em>)

and

<em>y</em>₂ = <em>at</em> + <em>b</em>

<em />

• <em>y''</em> + 4<em>y'</em> + 3<em>y</em> = 8<em>t</em> exp(-<em>t </em>) + 6 exp(-<em>t</em> ) … … … [1]

Compute the derivatives of <em>y</em>₁ :

<em>y</em>₁ = (<em>at</em> ² + <em>bt</em> + <em>c</em>) exp(-<em>t </em>)

<em>y</em>₁' = (2<em>at</em> + <em>b</em>) exp(-<em>t </em>) - (<em>at</em> ² + <em>bt</em> + <em>c</em>) exp(-<em>t </em>)

… = (-<em>at</em> ² + (2<em>a</em> - <em>b</em>) <em>t</em> + <em>b</em> - <em>c</em>) exp(-<em>t </em>)

<em>y</em>₁'' = (-2<em>at</em> + 2<em>a</em> - <em>b</em>) exp(-<em>t </em>) - (-<em>at</em> ² + (2<em>a</em> - <em>b</em>) <em>t</em> + <em>b</em> - <em>c</em>) exp(-<em>t </em>)

… = (<em>at</em> ² + (<em>b</em> - 4<em>a</em>) <em>t</em> + 2<em>a</em> - 2<em>b</em> + <em>c</em>) exp(-<em>t</em> )

Substitute them into the ODE [1] to get

→   [(<em>at</em> ² + (<em>b</em> - 4<em>a</em>) <em>t</em> + 2<em>a</em> - 2<em>b</em> + <em>c</em>) + 4 (-<em>at</em> ² + (2<em>a</em> - <em>b</em>) <em>t</em> + <em>b</em> - <em>c</em>) + 3 (<em>at</em> ² + <em>bt</em> + <em>c</em>)] exp(-<em>t</em> ) = 8<em>t</em> exp(-<em>t </em>) + 6 exp(-<em>t</em> )

(<em>at</em> ² + (<em>b</em> - 4<em>a</em>) <em>t</em> + 2<em>a</em> - 2<em>b</em> + <em>c</em>) + 4 (-<em>at</em> ² + (2<em>a</em> - <em>b</em>) <em>t</em> + <em>b</em> - <em>c</em>) + 3 (<em>at</em> ² + <em>bt</em> + <em>c</em>) = 8<em>t</em> + 6

4<em>at</em> + 2<em>a</em> + 2<em>b</em> = 8<em>t</em> + 6

→   4<em>a</em> = 8   and   2<em>a</em> + 2<em>b</em> = 6

→   <em>a</em> = 2   and   <em>b</em> = 1

→   <em>y</em>₁ = (2<em>t</em> ² + <em>t </em>) exp(-<em>t </em>)

(Note that we don't find out anything about <em>c</em>, but that's okay since it would have gotten absorbed into the first characteristic solution exp(-<em>t</em> ) anyway.)

• <em>y''</em> + 4<em>y'</em> + 3<em>y</em> = -(9<em>t</em> + 6) … … … [2]

Compute the derivatives of <em>y</em>₂ :

<em>y</em>₂ = <em>at</em> + <em>b</em>

<em>y</em>₂' = <em>a</em>

<em>y</em>₂'' = 0

Substitute these into [2] :

4<em>a</em> + 3 (<em>at</em> + <em>b</em>) = -9<em>t</em> - 6

3<em>at</em> + 4<em>a</em> + 3<em>b</em> = -9<em>t</em> - 6

→   3<em>a</em> = -9   and   4<em>a</em> + 3<em>b</em> = -6

→   <em>a</em> = -3   and   <em>b</em> = 2

→   <em>y</em>₂ = -3<em>t</em> + 2

Then the general solution to the original ODE is

<em>y(t)</em> = <em>C</em>₁ exp(-<em>t</em> ) + <em>C</em>₂ exp(-3<em>t</em> ) + (2<em>t</em> ² + <em>t </em>) exp(-<em>t </em>) - 3<em>t</em> + 2

Use the initial conditions <em>y</em> (0) = 2 and <em>y'</em> (0) = 2 to solve for <em>C</em>₁ and <em>C</em>₂ :

<em>y</em> (0) = <em>C</em>₁ + <em>C</em>₂ + 2 = 2

→   <em>C</em>₁ + <em>C</em>₂ = 0 … … … [3]

<em>y'(t)</em> = -<em>C</em>₁ exp(-<em>t</em> ) - 3<em>C</em>₂ exp(-3<em>t</em> ) + (-2<em>t</em> ² + 3<em>t</em> + 1) exp(-<em>t </em>) - 3

<em>y'</em> (0) = -<em>C</em>₁ - 3<em>C</em>₂ + 1 - 3 = 2

→   <em>C</em>₁ + 3<em>C</em>₂ = -4 … … … [4]

Solve equations [3] and [4] to get <em>C</em>₁ = 2 and <em>C</em>₂ = -2. Then the particular solution to the initial value problem is

<em>y(t)</em> = -2 exp(-3<em>t</em> ) + (2<em>t</em> ² + <em>t</em> + 2) exp(-<em>t </em>) - 3<em>t</em> + 2

You might be interested in
Please show me step by step so I can learn to explain it to my son.
aleksklad [387]
These are the steps:
1. Find the area of the trapezium {Whole figure).
2. FInd the area of the rectangle (unshaded).
3. Area of the shaded = Area of trapezium - Area of the rectangle.

<u>Step 1:  Find the area of the trapezium</u>:

Formula : Area of trapezium = 1/2 (a + b)h 

Area = 1/2 ( 25 + 15) (12) = 240 yd²

<u>Step </u><u>2 :</u><u> Find the area of the rectangle</u>:

Formula : Area = Length x Width

Area = 12 x 3 = 36 yd²

<u>Step 3: Find the shaded region:</u>

240 - 36 = 204 yd²

Answer: 204 yd²

6 0
3 years ago
the length of a rectangle is 50 feet less than its width. If the perimeter of the field is 840 feet, find the length of the fiel
LiRa [457]
look\ at\ the\ picture\\\\2a+2(a-50)=840\\\\2a+2a-100=840\\\\4a-100=840\ \ \ /+100\\\\4a=940\ \ \ \ /:4\\\\a=235\ (ft)\\\\a-50=235-50=185\ (ft)\\\\Answer:lenght=185\ ft;\ width=235\ ft.

8 0
3 years ago
Mrs. Smith's class is working on a variety of science experiments. Each
SVETLANKA909090 [29]

Answer:

66

Step-by-step explanation:

If there are  <em>n</em>  students, then the number of pairs is \frac{n(n-1)}{2}.

With 12 students, \frac{12(12-1)}{2} = \frac{132}{2}=66 pairs can be formed.

The reason the formula works is this:  Each of the 12 students can be paired with 11 other students (no student is paired with him/her self).  But counting 12 x 11 = 132  counts each pair <u>twice</u>.  Example: student A can be paired with student B,..., student B can be paired with student A.  The pair was counted two times.

See the attached image that shows pairings of 5 students.  There are

5(5 - 1)/2 = 5(4)/2 = 10 pairs.

8 0
3 years ago
Use the graph of the derivative of f to locate the critical points x0 at which f has neither a local maximum nor a local minimum
jok3333 [9.3K]
<span>Critical points are where the derivative is 0, i.e. where it crosses the x - axis

The Critical points lies where the derivative is 0, while it crosses the x-axis, SO, in this case the choice 3 looks like best answer for this.
</span>
6 0
3 years ago
Somebody please help and explain it.
s2008m [1.1K]

Explanation is in the file

tinyurl.com/wpazsebu

3 0
3 years ago
Other questions:
  • Winter break starts in 3 4/7 weeks. Write the mixed number as a fraction greater than one
    5·1 answer
  • What is the approximate area of the circle shown below?
    6·2 answers
  • Trina finds a car at a dealer for $6,100 The suggested retail price in the car price guide is $6,300. What is the difference bet
    10·2 answers
  • Solve for m ?( geometry?)
    7·1 answer
  • Please help, can you explain why it’s the answer
    14·1 answer
  • Do yall know any easy way to do slope​
    11·2 answers
  • I'm so lost on this work
    11·1 answer
  • Please no links because they dont work :).
    13·1 answer
  • In this figure, AB || CD and mZ3 = 120°.<br> What is mZ6?<br> (Look at picture”
    12·1 answer
  • 5. Show that the following points are collinear. a) (1, 2), (4, 5), (8,9) ​
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!