1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
AleksandrR [38]
3 years ago
7

In this problem you will use undetermined coefficients to solve the nonhomogeneous equation y′′+4y′+3y=8te^−t+6e^−t−(9t+6)

Mathematics
1 answer:
Luden [163]3 years ago
7 0

We're given the ODE,

<em>y''</em> + 4<em>y'</em> + 3<em>y</em> = 8<em>t</em> exp(-<em>t </em>) + 6 exp(-<em>t</em> ) - (9<em>t</em> + 6)

(where I denote exp(<em>x</em>) = <em>eˣ </em>)

First determine the characteristic solution:

<em>y''</em> + 4<em>y'</em> + 3<em>y</em> = 0

has characteristic equation

<em>r</em> ² + 4<em>r</em> + 3 = (<em>r</em> + 1) (<em>r</em> + 3) = 0

with roots at <em>r</em> = -1 and <em>r</em> = -3, so the characteristic solution is

<em>y</em> = <em>C</em>₁ exp(-<em>t</em> ) + <em>C</em>₂ exp(-3<em>t</em> )

For the non-homogeneous equation, assume two ansatz solutions

<em>y</em>₁ = (<em>at</em> ² + <em>bt</em> + <em>c</em>) exp(-<em>t </em>)

and

<em>y</em>₂ = <em>at</em> + <em>b</em>

<em />

• <em>y''</em> + 4<em>y'</em> + 3<em>y</em> = 8<em>t</em> exp(-<em>t </em>) + 6 exp(-<em>t</em> ) … … … [1]

Compute the derivatives of <em>y</em>₁ :

<em>y</em>₁ = (<em>at</em> ² + <em>bt</em> + <em>c</em>) exp(-<em>t </em>)

<em>y</em>₁' = (2<em>at</em> + <em>b</em>) exp(-<em>t </em>) - (<em>at</em> ² + <em>bt</em> + <em>c</em>) exp(-<em>t </em>)

… = (-<em>at</em> ² + (2<em>a</em> - <em>b</em>) <em>t</em> + <em>b</em> - <em>c</em>) exp(-<em>t </em>)

<em>y</em>₁'' = (-2<em>at</em> + 2<em>a</em> - <em>b</em>) exp(-<em>t </em>) - (-<em>at</em> ² + (2<em>a</em> - <em>b</em>) <em>t</em> + <em>b</em> - <em>c</em>) exp(-<em>t </em>)

… = (<em>at</em> ² + (<em>b</em> - 4<em>a</em>) <em>t</em> + 2<em>a</em> - 2<em>b</em> + <em>c</em>) exp(-<em>t</em> )

Substitute them into the ODE [1] to get

→   [(<em>at</em> ² + (<em>b</em> - 4<em>a</em>) <em>t</em> + 2<em>a</em> - 2<em>b</em> + <em>c</em>) + 4 (-<em>at</em> ² + (2<em>a</em> - <em>b</em>) <em>t</em> + <em>b</em> - <em>c</em>) + 3 (<em>at</em> ² + <em>bt</em> + <em>c</em>)] exp(-<em>t</em> ) = 8<em>t</em> exp(-<em>t </em>) + 6 exp(-<em>t</em> )

(<em>at</em> ² + (<em>b</em> - 4<em>a</em>) <em>t</em> + 2<em>a</em> - 2<em>b</em> + <em>c</em>) + 4 (-<em>at</em> ² + (2<em>a</em> - <em>b</em>) <em>t</em> + <em>b</em> - <em>c</em>) + 3 (<em>at</em> ² + <em>bt</em> + <em>c</em>) = 8<em>t</em> + 6

4<em>at</em> + 2<em>a</em> + 2<em>b</em> = 8<em>t</em> + 6

→   4<em>a</em> = 8   and   2<em>a</em> + 2<em>b</em> = 6

→   <em>a</em> = 2   and   <em>b</em> = 1

→   <em>y</em>₁ = (2<em>t</em> ² + <em>t </em>) exp(-<em>t </em>)

(Note that we don't find out anything about <em>c</em>, but that's okay since it would have gotten absorbed into the first characteristic solution exp(-<em>t</em> ) anyway.)

• <em>y''</em> + 4<em>y'</em> + 3<em>y</em> = -(9<em>t</em> + 6) … … … [2]

Compute the derivatives of <em>y</em>₂ :

<em>y</em>₂ = <em>at</em> + <em>b</em>

<em>y</em>₂' = <em>a</em>

<em>y</em>₂'' = 0

Substitute these into [2] :

4<em>a</em> + 3 (<em>at</em> + <em>b</em>) = -9<em>t</em> - 6

3<em>at</em> + 4<em>a</em> + 3<em>b</em> = -9<em>t</em> - 6

→   3<em>a</em> = -9   and   4<em>a</em> + 3<em>b</em> = -6

→   <em>a</em> = -3   and   <em>b</em> = 2

→   <em>y</em>₂ = -3<em>t</em> + 2

Then the general solution to the original ODE is

<em>y(t)</em> = <em>C</em>₁ exp(-<em>t</em> ) + <em>C</em>₂ exp(-3<em>t</em> ) + (2<em>t</em> ² + <em>t </em>) exp(-<em>t </em>) - 3<em>t</em> + 2

Use the initial conditions <em>y</em> (0) = 2 and <em>y'</em> (0) = 2 to solve for <em>C</em>₁ and <em>C</em>₂ :

<em>y</em> (0) = <em>C</em>₁ + <em>C</em>₂ + 2 = 2

→   <em>C</em>₁ + <em>C</em>₂ = 0 … … … [3]

<em>y'(t)</em> = -<em>C</em>₁ exp(-<em>t</em> ) - 3<em>C</em>₂ exp(-3<em>t</em> ) + (-2<em>t</em> ² + 3<em>t</em> + 1) exp(-<em>t </em>) - 3

<em>y'</em> (0) = -<em>C</em>₁ - 3<em>C</em>₂ + 1 - 3 = 2

→   <em>C</em>₁ + 3<em>C</em>₂ = -4 … … … [4]

Solve equations [3] and [4] to get <em>C</em>₁ = 2 and <em>C</em>₂ = -2. Then the particular solution to the initial value problem is

<em>y(t)</em> = -2 exp(-3<em>t</em> ) + (2<em>t</em> ² + <em>t</em> + 2) exp(-<em>t </em>) - 3<em>t</em> + 2

You might be interested in
How old am I if 200 reduced by 2 times my age is 6?
padilas [110]
You would be 12. 6*2=12 then divide by 200
4 0
3 years ago
Read 2 more answers
What point is the solution to the system of equations y = -1/2 and y = 2x - 5?
tatuchka [14]

Answer:

(2.25,-0.5)

Step-by-step explanation:

If you were to graph the equations, they intersect at the points 2.25, and -0.5.

5 0
3 years ago
Read 2 more answers
The taco truck sells tacos for and burritos for . The number of items sold on a Tuesday is with a total income of . How many tac
ludmilkaskok [199]

Answer:

You didnt say the price otherwise how am i suppose to give you the answer

Step-by-step explanation:

8 0
3 years ago
Need help with these 3
Tamiku [17]

Answer:

1.) x = 110

\frac{3}{22} =\frac{15}{x}

So for 3 to become 15 it would have to be multiplied by 5 because 3 x 5 = 15. And if I multiply the numerator by anything I always have to do the same to the denominator. So I multiply 22 x 5 = x. x = 110

\frac{3 * 5}{22*5} =\frac{15}{110}

2.) x = 72

\frac{x}{16} =\frac{9}{2}

For 16 to become 2 it has to be divided by 8 because 16 ÷ 8 = 2. And I have to do the same to the numerator of course, so i have to find x ÷ 8 = 9. I know the answer by memory, but for some it's easier to rewrite this as 9 × 8 = x. x=72

\frac{72}{16} =\frac{9}{2}

3.) c = 24

\frac{3}{5} =\frac{c}{40}

For 5 to become 40 it must be multiplied by 8 because 5 × 8 = 40. I have to multiply 8 by the numerator as well and 3 × 8 = 24. c = 24

\frac{3*8}{5*8} =\frac{24}{40}

5 0
3 years ago
Read 2 more answers
A store marks up all of their merchandise by 70%. The floor price of a scarf is $117.25.
KiRa [710]

Answer:

  $68.97

Step-by-step explanation:

Markup is the difference between the cost of an item and the price at which it is sold:

  cost price + markup = selling price

Here, the markup is said to be 70%. The base for that percentage can be either the cost price or the selling price. The way this question is worded suggests the markup is 70% of the cost price.

So, we have ...

  cost price + 0.70 × cost price = selling price

or

  cost price × (1 + 0.70) = selling price

__

Then, to find the cost price, we can divide by its coefficient in this equation. Doing that gives ...

  cost price = (selling price)/1.70

  cost price = $117.25/1.70 = $68.97

The store's purchase price before the markup for this item was $68.97.

4 0
3 years ago
Other questions:
  • What are the zeros of the function f(x)=3x^2-3x-6
    5·1 answer
  • What is the slope of a line that contains the points (-1, 9) And 5, 21)
    12·1 answer
  • Choose the more precise measurement 6.5qt or 6.54qt
    11·2 answers
  • ANWSER these three questions show ur work, if u can is somewhat optional
    10·1 answer
  • Please help me im failing
    13·1 answer
  • PLS HELP ILL MARK BRAINLIEST FOR EXPLANATION If the spinner shown below is spun 40 times, predict the number of times the spinne
    8·2 answers
  • NEED HELP FAST PLEASE! Match each whole number with a rational, exponential expression.
    12·1 answer
  • Write the equation of a line that is BOTH PARALLEL and PERPENDICULAR
    8·1 answer
  • (b) 3, 3, 5 and
    5·1 answer
  • Which of these values could be the slopebof the line? select 2 options.​
    14·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!