1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
AleksandrR [38]
2 years ago
7

In this problem you will use undetermined coefficients to solve the nonhomogeneous equation y′′+4y′+3y=8te^−t+6e^−t−(9t+6)

Mathematics
1 answer:
Luden [163]2 years ago
7 0

We're given the ODE,

<em>y''</em> + 4<em>y'</em> + 3<em>y</em> = 8<em>t</em> exp(-<em>t </em>) + 6 exp(-<em>t</em> ) - (9<em>t</em> + 6)

(where I denote exp(<em>x</em>) = <em>eˣ </em>)

First determine the characteristic solution:

<em>y''</em> + 4<em>y'</em> + 3<em>y</em> = 0

has characteristic equation

<em>r</em> ² + 4<em>r</em> + 3 = (<em>r</em> + 1) (<em>r</em> + 3) = 0

with roots at <em>r</em> = -1 and <em>r</em> = -3, so the characteristic solution is

<em>y</em> = <em>C</em>₁ exp(-<em>t</em> ) + <em>C</em>₂ exp(-3<em>t</em> )

For the non-homogeneous equation, assume two ansatz solutions

<em>y</em>₁ = (<em>at</em> ² + <em>bt</em> + <em>c</em>) exp(-<em>t </em>)

and

<em>y</em>₂ = <em>at</em> + <em>b</em>

<em />

• <em>y''</em> + 4<em>y'</em> + 3<em>y</em> = 8<em>t</em> exp(-<em>t </em>) + 6 exp(-<em>t</em> ) … … … [1]

Compute the derivatives of <em>y</em>₁ :

<em>y</em>₁ = (<em>at</em> ² + <em>bt</em> + <em>c</em>) exp(-<em>t </em>)

<em>y</em>₁' = (2<em>at</em> + <em>b</em>) exp(-<em>t </em>) - (<em>at</em> ² + <em>bt</em> + <em>c</em>) exp(-<em>t </em>)

… = (-<em>at</em> ² + (2<em>a</em> - <em>b</em>) <em>t</em> + <em>b</em> - <em>c</em>) exp(-<em>t </em>)

<em>y</em>₁'' = (-2<em>at</em> + 2<em>a</em> - <em>b</em>) exp(-<em>t </em>) - (-<em>at</em> ² + (2<em>a</em> - <em>b</em>) <em>t</em> + <em>b</em> - <em>c</em>) exp(-<em>t </em>)

… = (<em>at</em> ² + (<em>b</em> - 4<em>a</em>) <em>t</em> + 2<em>a</em> - 2<em>b</em> + <em>c</em>) exp(-<em>t</em> )

Substitute them into the ODE [1] to get

→   [(<em>at</em> ² + (<em>b</em> - 4<em>a</em>) <em>t</em> + 2<em>a</em> - 2<em>b</em> + <em>c</em>) + 4 (-<em>at</em> ² + (2<em>a</em> - <em>b</em>) <em>t</em> + <em>b</em> - <em>c</em>) + 3 (<em>at</em> ² + <em>bt</em> + <em>c</em>)] exp(-<em>t</em> ) = 8<em>t</em> exp(-<em>t </em>) + 6 exp(-<em>t</em> )

(<em>at</em> ² + (<em>b</em> - 4<em>a</em>) <em>t</em> + 2<em>a</em> - 2<em>b</em> + <em>c</em>) + 4 (-<em>at</em> ² + (2<em>a</em> - <em>b</em>) <em>t</em> + <em>b</em> - <em>c</em>) + 3 (<em>at</em> ² + <em>bt</em> + <em>c</em>) = 8<em>t</em> + 6

4<em>at</em> + 2<em>a</em> + 2<em>b</em> = 8<em>t</em> + 6

→   4<em>a</em> = 8   and   2<em>a</em> + 2<em>b</em> = 6

→   <em>a</em> = 2   and   <em>b</em> = 1

→   <em>y</em>₁ = (2<em>t</em> ² + <em>t </em>) exp(-<em>t </em>)

(Note that we don't find out anything about <em>c</em>, but that's okay since it would have gotten absorbed into the first characteristic solution exp(-<em>t</em> ) anyway.)

• <em>y''</em> + 4<em>y'</em> + 3<em>y</em> = -(9<em>t</em> + 6) … … … [2]

Compute the derivatives of <em>y</em>₂ :

<em>y</em>₂ = <em>at</em> + <em>b</em>

<em>y</em>₂' = <em>a</em>

<em>y</em>₂'' = 0

Substitute these into [2] :

4<em>a</em> + 3 (<em>at</em> + <em>b</em>) = -9<em>t</em> - 6

3<em>at</em> + 4<em>a</em> + 3<em>b</em> = -9<em>t</em> - 6

→   3<em>a</em> = -9   and   4<em>a</em> + 3<em>b</em> = -6

→   <em>a</em> = -3   and   <em>b</em> = 2

→   <em>y</em>₂ = -3<em>t</em> + 2

Then the general solution to the original ODE is

<em>y(t)</em> = <em>C</em>₁ exp(-<em>t</em> ) + <em>C</em>₂ exp(-3<em>t</em> ) + (2<em>t</em> ² + <em>t </em>) exp(-<em>t </em>) - 3<em>t</em> + 2

Use the initial conditions <em>y</em> (0) = 2 and <em>y'</em> (0) = 2 to solve for <em>C</em>₁ and <em>C</em>₂ :

<em>y</em> (0) = <em>C</em>₁ + <em>C</em>₂ + 2 = 2

→   <em>C</em>₁ + <em>C</em>₂ = 0 … … … [3]

<em>y'(t)</em> = -<em>C</em>₁ exp(-<em>t</em> ) - 3<em>C</em>₂ exp(-3<em>t</em> ) + (-2<em>t</em> ² + 3<em>t</em> + 1) exp(-<em>t </em>) - 3

<em>y'</em> (0) = -<em>C</em>₁ - 3<em>C</em>₂ + 1 - 3 = 2

→   <em>C</em>₁ + 3<em>C</em>₂ = -4 … … … [4]

Solve equations [3] and [4] to get <em>C</em>₁ = 2 and <em>C</em>₂ = -2. Then the particular solution to the initial value problem is

<em>y(t)</em> = -2 exp(-3<em>t</em> ) + (2<em>t</em> ² + <em>t</em> + 2) exp(-<em>t </em>) - 3<em>t</em> + 2

You might be interested in
I NEED THE ANSWERS PLZ
g100num [7]

Answer:

1. 32

2. 4.7

3. 3

Step-by-step explanation:

4*8=32

6.5-1.8= 4.7

18/6=3 or 18 divided by 6 = 3

5 0
2 years ago
Read 2 more answers
Answer this please!!!!! Will mark.
Solnce55 [7]

Answer:

4.75

Step-by-step explanation:

u×t=5 +1/2×-2×1/2²

7 0
3 years ago
Read 2 more answers
In one day's work at the nursery, sale and mary together potted 74 plants. If dale planted 48 of those plants how many did mary
xenn [34]

Answer:

Mary potted 26 of the plants.

Step-by-step explanation:

74 - 48 = 26

7 0
3 years ago
Read 2 more answers
3 miles per minute is equivalent to feet per minute.
Sidana [21]

Answer: 15840 feet per minute.

Step-by-step explanation:

Convert 3 miles to feet  and let the minute stay the same.

3 miles is the same is 15840 feet.  

So it means the  3 miles is equivalent or equal to the same as  15840 feet per minute.

8 0
3 years ago
Question 7 of 10
Gelneren [198K]

The group of values plugged into the TVM Solver of a graphing calculator that will return the amount of a 25-year loan with an APR of 16.8%, that is paid off with monthly payments of $340 is:

A. N=300; 1%-1.4; PV = PMT=-340; FV=0; P/Y=12; C/Y=12;PMT:END

What is monthly compounding?

Monthly compounding in this case the number of payments would be the number of monthly payments in 25 years, which is 300 monthly payments(i.e. 12*25=300), this means that options B and D are obviously incorrect because number of payments, N is given as 25( 25 years instead of 300 months)

What is monthly interest rate?

The monthly interest is the annual interest rate of 16.8% divided by 12, which is 1.40%, in short, option C is also wrong because I/Y(monthly interest rate) was as shown as an interest rate of 16.8% instead of 1.40%

Overall, the correct option is A, because the number of payments and interest rate were stated correctly, unlike other options that were incorrectly written

Find out about more about TVM Solver notations on:brainly.com/question/14586708

#SPJ1

5 0
2 years ago
Other questions:
  • Six hundred two and six tenths as a decimal
    7·1 answer
  • The annual interest rate on a loan is 10% which can be represented using the expression 1.10t. Write an expression that represen
    9·1 answer
  • The graph shows the rate at which the depth of the water in a pond is changing over time. On a coordinate plane, a graph titled
    9·2 answers
  • Which series of transformations results in the image being congruent to the pre-image?
    8·2 answers
  • 15 POINTS
    6·1 answer
  • Convert 113% into a fraction
    5·1 answer
  • 4x - 9 + 23x in the simplest form
    9·2 answers
  • Whici expression could be used to represent 2/3
    12·1 answer
  • -9+b=3.5 what is the value of b?
    12·1 answer
  • Help me please 9 - 4(2p - 1) = 41
    10·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!