1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
AleksandrR [38]
3 years ago
7

In this problem you will use undetermined coefficients to solve the nonhomogeneous equation y′′+4y′+3y=8te^−t+6e^−t−(9t+6)

Mathematics
1 answer:
Luden [163]3 years ago
7 0

We're given the ODE,

<em>y''</em> + 4<em>y'</em> + 3<em>y</em> = 8<em>t</em> exp(-<em>t </em>) + 6 exp(-<em>t</em> ) - (9<em>t</em> + 6)

(where I denote exp(<em>x</em>) = <em>eˣ </em>)

First determine the characteristic solution:

<em>y''</em> + 4<em>y'</em> + 3<em>y</em> = 0

has characteristic equation

<em>r</em> ² + 4<em>r</em> + 3 = (<em>r</em> + 1) (<em>r</em> + 3) = 0

with roots at <em>r</em> = -1 and <em>r</em> = -3, so the characteristic solution is

<em>y</em> = <em>C</em>₁ exp(-<em>t</em> ) + <em>C</em>₂ exp(-3<em>t</em> )

For the non-homogeneous equation, assume two ansatz solutions

<em>y</em>₁ = (<em>at</em> ² + <em>bt</em> + <em>c</em>) exp(-<em>t </em>)

and

<em>y</em>₂ = <em>at</em> + <em>b</em>

<em />

• <em>y''</em> + 4<em>y'</em> + 3<em>y</em> = 8<em>t</em> exp(-<em>t </em>) + 6 exp(-<em>t</em> ) … … … [1]

Compute the derivatives of <em>y</em>₁ :

<em>y</em>₁ = (<em>at</em> ² + <em>bt</em> + <em>c</em>) exp(-<em>t </em>)

<em>y</em>₁' = (2<em>at</em> + <em>b</em>) exp(-<em>t </em>) - (<em>at</em> ² + <em>bt</em> + <em>c</em>) exp(-<em>t </em>)

… = (-<em>at</em> ² + (2<em>a</em> - <em>b</em>) <em>t</em> + <em>b</em> - <em>c</em>) exp(-<em>t </em>)

<em>y</em>₁'' = (-2<em>at</em> + 2<em>a</em> - <em>b</em>) exp(-<em>t </em>) - (-<em>at</em> ² + (2<em>a</em> - <em>b</em>) <em>t</em> + <em>b</em> - <em>c</em>) exp(-<em>t </em>)

… = (<em>at</em> ² + (<em>b</em> - 4<em>a</em>) <em>t</em> + 2<em>a</em> - 2<em>b</em> + <em>c</em>) exp(-<em>t</em> )

Substitute them into the ODE [1] to get

→   [(<em>at</em> ² + (<em>b</em> - 4<em>a</em>) <em>t</em> + 2<em>a</em> - 2<em>b</em> + <em>c</em>) + 4 (-<em>at</em> ² + (2<em>a</em> - <em>b</em>) <em>t</em> + <em>b</em> - <em>c</em>) + 3 (<em>at</em> ² + <em>bt</em> + <em>c</em>)] exp(-<em>t</em> ) = 8<em>t</em> exp(-<em>t </em>) + 6 exp(-<em>t</em> )

(<em>at</em> ² + (<em>b</em> - 4<em>a</em>) <em>t</em> + 2<em>a</em> - 2<em>b</em> + <em>c</em>) + 4 (-<em>at</em> ² + (2<em>a</em> - <em>b</em>) <em>t</em> + <em>b</em> - <em>c</em>) + 3 (<em>at</em> ² + <em>bt</em> + <em>c</em>) = 8<em>t</em> + 6

4<em>at</em> + 2<em>a</em> + 2<em>b</em> = 8<em>t</em> + 6

→   4<em>a</em> = 8   and   2<em>a</em> + 2<em>b</em> = 6

→   <em>a</em> = 2   and   <em>b</em> = 1

→   <em>y</em>₁ = (2<em>t</em> ² + <em>t </em>) exp(-<em>t </em>)

(Note that we don't find out anything about <em>c</em>, but that's okay since it would have gotten absorbed into the first characteristic solution exp(-<em>t</em> ) anyway.)

• <em>y''</em> + 4<em>y'</em> + 3<em>y</em> = -(9<em>t</em> + 6) … … … [2]

Compute the derivatives of <em>y</em>₂ :

<em>y</em>₂ = <em>at</em> + <em>b</em>

<em>y</em>₂' = <em>a</em>

<em>y</em>₂'' = 0

Substitute these into [2] :

4<em>a</em> + 3 (<em>at</em> + <em>b</em>) = -9<em>t</em> - 6

3<em>at</em> + 4<em>a</em> + 3<em>b</em> = -9<em>t</em> - 6

→   3<em>a</em> = -9   and   4<em>a</em> + 3<em>b</em> = -6

→   <em>a</em> = -3   and   <em>b</em> = 2

→   <em>y</em>₂ = -3<em>t</em> + 2

Then the general solution to the original ODE is

<em>y(t)</em> = <em>C</em>₁ exp(-<em>t</em> ) + <em>C</em>₂ exp(-3<em>t</em> ) + (2<em>t</em> ² + <em>t </em>) exp(-<em>t </em>) - 3<em>t</em> + 2

Use the initial conditions <em>y</em> (0) = 2 and <em>y'</em> (0) = 2 to solve for <em>C</em>₁ and <em>C</em>₂ :

<em>y</em> (0) = <em>C</em>₁ + <em>C</em>₂ + 2 = 2

→   <em>C</em>₁ + <em>C</em>₂ = 0 … … … [3]

<em>y'(t)</em> = -<em>C</em>₁ exp(-<em>t</em> ) - 3<em>C</em>₂ exp(-3<em>t</em> ) + (-2<em>t</em> ² + 3<em>t</em> + 1) exp(-<em>t </em>) - 3

<em>y'</em> (0) = -<em>C</em>₁ - 3<em>C</em>₂ + 1 - 3 = 2

→   <em>C</em>₁ + 3<em>C</em>₂ = -4 … … … [4]

Solve equations [3] and [4] to get <em>C</em>₁ = 2 and <em>C</em>₂ = -2. Then the particular solution to the initial value problem is

<em>y(t)</em> = -2 exp(-3<em>t</em> ) + (2<em>t</em> ² + <em>t</em> + 2) exp(-<em>t </em>) - 3<em>t</em> + 2

You might be interested in
Plz help me solving this question ​
ankoles [38]

Answer:

Step-by-step explanation:

3) Surface area of cube = 6a² where a is side of the cube.

a)  a = 6 cm

Surface area of cube = 6 * 6*6 = 216 cm²

b) a = 4.5 cm

Surface area of cube = 6 * 4.5 * 4.5 = 121.5 cm²

4)  Area of cuboid = A = 2(lb + bh + hl)

a) l = 10 cm ; h = 6 cm  ; A = 376 cm²

  A = 376

2(lb + bh + hl) = 376

2(10b + 6b + 60) = 376

2*( 16b + 60) = 376

 2*16b + 2*60 = 376

     32b + 120 = 376

        32b  = 376 - 120

          32b = 256

             b = 256 / 32

b = 8 cm

5) Surface area  of cube = 150 cm²

6a² = 150

Divide both sides by 6

a² = 150/6

a² = 25 = 5*5

a = 5 cm

6)  l = 15 cm ; b = 12 cm ; h = 10cm

Lidless. so area of top portion is not included

Surface area of lidless cuboid = 2(hb + hl) + lb

                                                  = 2*(10*12 + 10*15) + (15*12)

                                                  = 2*(120 + 150) + 180

                                                  = 2* 270 + 180

                                                  = 540 + 180

                                                   = 720 cm²

4 0
3 years ago
Read 2 more answers
See attachment below. Please answer. Thank you.
KonstantinChe [14]

Hi

The probability of landing a green side up is 2 / 6 .

Hope this helps

3 0
3 years ago
Read 2 more answers
In a food manufacturing company, the decision to reorder raw materials when inventories drop to a certain level is an example of
Nastasia [14]

Answer:

  a. programmed decision

Step-by-step explanation:

When a decision is routinely made based on rules that look at specific measurable criteria, it is a <em>programmed decision</em>.

7 0
3 years ago
Choose the equation below that represents the line passing through the point (1, −4) with a slope of one half.
AVprozaik [17]

Answer:

the equation would be y=1/2x-9/2

Step-by-step explanation:

next time try to put the answers like the question did because that's always helpful

6 0
3 years ago
sean has a piece of string 7/8 meter long. he uses 1/5 of the piece of string to tie a package and cuts the rest into 5 equal pi
Ipatiy [6.2K]
7/8 - 1/5 = 0.675
0.675 / 5 = 0.135
8 0
3 years ago
Other questions:
  • What is the value of five in 3156
    12·2 answers
  • a playing field is a rectangle that is 450 feet long by 240 feet wide. find to the nearest foot the length of a straight line ru
    15·1 answer
  • What is the slope of the line that contains the points (-1, -1) and (3, 15)?
    5·1 answer
  • Carlos is 63 inches tall. What is the height in feet
    12·2 answers
  • the losing team in a baseball game scored 2 runs witch ineguality represents the number of runs ,r , that thewinning team could
    8·1 answer
  • Identify the slope and y-intercept of the following line: 3x + y = -1
    13·2 answers
  • 12 43 a а- 5 6 b + 8 7 Line a is parallel to line b, m 2 = 4x+44, and m 46 = 6x +36 . Find the value of x.​
    9·1 answer
  • Shirley purchased a plot of land for $19,500. The land appreciates about 3.9% each year. What is the value of the land after fiv
    11·1 answer
  • What is the name of the number that occurs most often in a data set?
    14·2 answers
  • Find q.<br> Write your answer as an integer or as a decimal rounded to the nearest tenth.
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!