1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Elodia [21]
3 years ago
7

2 Select the correct answer. Adrianna is using exponential functions to model the value, in whole dollars, of two investments. S

he represents the value of investment A with a description of its key features and the value of investment B with a table. In both cases, xis the number of years she has held the investment.​
Mathematics
1 answer:
Archy [21]3 years ago
7 0

Answer: A.  

Both investments are decreasing in value, and investment A is decreasing in value faster.

Step-by-step explanation:

You might be interested in
Estimate the decimal expression.<br> 0.62-(-0.51)
lawyer [7]

Answer: 1.13

Step-by-step explanation: 0.62-(-0.51) = 1.13

Hope it works

3 0
3 years ago
Read 2 more answers
6. If you draw 35 lines on a piece of paper so that no two lines are parallel to each
umka2103 [35]

The point of intersection is the point where lines intersect.

<em>There will be 595 intersections for 35 lines, where no 3 lines are concurrent.</em>

<em />

Given

<em />n = 35<em> --- the number of lines</em>

<em />d = 3<em> --- no three lines are concurrent</em>

<em />

When no three line are concurrent, it means that no three lines meet at the same point.

<u>So, the sequence of intersection is:</u>

  • <em>0 intersection for 1 line</em>
  • <em>1 intersection for 2 lines</em>
  • <em>3 intersections for 3 lines</em>
  • <em>6 intersections for 4 lines</em>

<em />

Following the above sequence, the number of intersections for n lines is:

n_k = \frac{n \times (n - 1)}{2}

In this case, n = 35.

So, we have:

n_k = \frac{35 \times (35 - 1)}{2}

n_k = \frac{35 \times 34}{2}

n_k = 35 \times 17

n_k = 595

<em>Hence, there will be 595 intersections for 35 lines, where no 3 lines are concurrent.</em>

<em />

Read more about lines of intersections at:

brainly.com/question/22368617

7 0
3 years ago
Read 2 more answers
In ΔWXY, the measure of ∠Y=90°, XW = 85, WY = 84, and YX = 13. What is the value of the cosine of ∠W to the nearest hundredth?
IgorLugansk [536]

Answer: 0.99

Step-by-step explanation:

SOH CAH TOA

CAH: cosine = adjacent/hypotenuse

Cosine of angle w = 84/85 = 0.98823 ≈ 0.99

Angle Y is 90 degrees, meaning it's a right triangle. Therefore angle W is the top/tip of a triangle, while X is the angle next to Y. If you plug in the information afterwards and follow the trigonometry rule (SOH CAH TOA) you will find your answer.

4 0
4 years ago
A count went from 605 to 203. What was the approximate percent decrease? Round the numbers to find an estimate of the percent de
topjm [15]

Answer:

66%

Step-by-step explanation:

5 0
3 years ago
Sea un cuadrado de 2 pulgadas de lado uniendo los puntos medios se obtiene otro cuadrado inscrito en el anterior si repetimos es
Ne4ueva [31]

Answer:

1) La serie geométrica formada es

4, 2, 1,..., ∞

2) La suma al infinito de las áreas de los cuadrados es 8 in.²

Step-by-step explanation:

1) El área del primer cuadrado, a₁ = 2² = 4 pulgadas²

El área del siguiente cuadrado, a₂ = (√ (1² + 1²)) ² = (√2) ² = 2 pulg²

El área del siguiente cuadrado, a₃ = ((√ (2) / 2) ² + (√ (2) / 2) ²) = 1 pulg²

Por lo tanto, la razón común, r = a₂ / a₁ = 2/4 = a₃ / a₂ = 1/2

Las áreas de los cuadrados progresivos forman una progresión geométrica como sigue;

4, 4×(1/2), 4 ×(1/2)²,...,4×(1/2)^{\infty}

De donde obtenemos la serie geométrica formada de la siguiente manera;

4, 2, 1,..., ∞

2) La suma de 'n' términos de una progresión geométrica hasta el infinito para -1 <r <1 se da como sigue;

S_{\infty} = \dfrac{a}{1 - r}

Por lo tanto, la suma de las áreas de los cuadrados hasta el infinito se obtiene sustituyendo los valores de 'a' y 'r' en la ecuación anterior de la siguiente manera;

La \ suma \ al \ infinito \ del \ cuadrado \ S_{\infty}  = \dfrac{4 \ in.^2}{1 - \dfrac{1}{2} } = \dfrac{4 \ in.^2}{\left(\dfrac{1}{2} \right)} = 2 \times 4 \ in.^2= 8 \ in.^2

La suma al infinito de las áreas de los cuadrados, S_{\infty} = 8 in.²

7 0
3 years ago
Other questions:
  • What is the factored form 6n4-24n3+ 18n?
    7·1 answer
  • PLZ HELP ME<br><br> u/12.8= 8<br><br> What is u
    9·2 answers
  • PLEASE HELP I DON'T UNDERSTAND
    6·2 answers
  • Please help me anybody
    12·2 answers
  • 500
    13·1 answer
  • The square of a whole number is between 1200 and 1600. The number must be between
    5·1 answer
  • A circle is translated 4 units to the right and then reflected over the x-axis. Complete the statement so that it will always be
    5·1 answer
  • Pls help meeeeeeee with this
    12·1 answer
  • 1. Luis wants to buy Jordans for 75.23. He saves 10.27 per month. Write an equation to solve how many months he'll need to save.
    8·1 answer
  • Please help!! I need to go to the next question!
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!