1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
STatiana [176]
3 years ago
5

What does aerobic refer to?

Physics
2 answers:
Gnesinka [82]3 years ago
7 0

Answer:

A) how your body uses oxygen

svetoff [14.1K]3 years ago
4 0
It’s the first option
You might be interested in
I need help witha worksheet over circuitsin physics could someone help??
garik1379 [7]
Yes u can help I need to see th worksheet to help tho
5 0
3 years ago
In a $100$ meter track event, Alice runs at a constant speed and crosses the finish line $5$ seconds before Beatrice does. If it
Liono4ka [1.6K]

Answer:

10s

Explanation:

If it took Beatrice 25 seconds to complete the race

Distance = 100 meter

Beatrice speed = 100/25

                          = 4m/s

If Alice runs at a constant speed and crosses the finish line $5$ seconds, she must have completed the race in 20s (25 -5).

Her speed where constant

= 100/20

= 5 m/s

It would take Alice

= 50/5

= 10s

It would take Alice 10s to run $50$ meters.

5 0
3 years ago
In the Bohr model of the hydrogen atom, an electron moves in a circular path around a proton. The speed of the electron is appro
blondinia [14]
In order to answer these questions, we need to know the charges on
the electron and proton, and then we need to know the electron's mass. 
I'm beginning to get the creepy feeling that, in return for the generous
5 points, you also want me to go and look these up so I can use them
in calculations ... go and collect my own straw to make the bricks with,
as it were. 

Ok, Rameses:

Elementary charge . . . . .  1.6 x 10⁻¹⁹  coulomb
                                        negative on the electron
                                        plussitive on the proton

Electron rest-mass . . . . .  9.11 x 10⁻³¹  kg


a).  The force between two charges is

      F  =  (9 x 10⁹) Q₁ Q₂ / R²

          =  (9 x 10⁹ m/farad) (-1.6 x 10⁻¹⁹C) (1.6 x 10⁻¹⁹C) / (5.35 x 10⁻¹¹m)²

          =     ( -2.304 x 10⁻²⁸) / (5.35 x 10⁻¹¹)²

          =          8.05 x 10⁻⁸  Newton .


b).  Centripetal acceleration  = 

                                               v² / r  .

                  A  =  (2.03 x 10⁶)² / (5.35 x 10⁻¹¹)

                     =      7.7 x 10²²  m/s² .

That's an enormous acceleration ... about  7.85 x 10²¹  G's !
More than enough to cause the poor electron to lose its lunch.

It would be so easy to check this work of mine ...
First I calculated the force, then I calculated the centripetal acceleration.
I didn't use either answer to find the other one, and I didn't use  "  F = MA "
either.

I could just take the ' F ' that I found, and the 'A' that I found, and the
electron mass that I looked up, and mash the numbers together to see
whether  F = M A .

I'm going to leave that step for you.   Good luck !
4 0
3 years ago
State law of floatation<br>​
Stels [109]

The law of floatation states that, a floating body displaces its own weight of the fluid in which it floats.

8 0
2 years ago
A 2 kg rubber ball is thrown at a wall horizontally at 3 m/s, and bounces back the way it came at an equal speed. A 2 kg clay ba
Lyrx [107]

Answer:

THE RUBBER BALL

Explanation:

From the question we are told that

      The mass of the rubber ball is m_r   =  2 \ kg

      The  initial  speed of the rubber ball is  u =  3 \ m/s

      The final speed at which it bounces bank v  - 3 \ m/s

      The mass of the clay ball  is  m_c =  2  \ kg

       The  initial  speed of the clay  ball is u = 3 \ m/s

       The final speed of the clay ball is  v = 0 \  m/s

Generally Impulse is mathematically represented as

       I  =  \Delta p

where \Delta  p is the change in the linear momentum so  

       I  =  m(v-u)

For the rubber  is  

        I_r  =  2(-3 -3)

       I_r  = -12\ kg \cdot  m/s

=>     |I_r|  = 12\ kg \cdot  m/s

For the clay ball

       I_c  =  2(0-3)

        I_c =  -6 \ kg\cdot \ m/s

=>    | I_c| =  6 \ kg\cdot \ m/s

So from the above calculation the ball with the a higher magnitude of impulse is the rubber ball

       

8 0
3 years ago
Other questions:
  • Why is Mars surface temperature so low?
    12·2 answers
  • In Hooke's law, what does k represent?
    11·2 answers
  • Which organelle acts like the transportation or circulatory system of the cell?
    5·1 answer
  • A soccer ball is released from rest at the top of a grassy incline. After 8.6 seconds, the ball travels 87 meters and 1.0 s afte
    8·1 answer
  • According to the conservation of momentum, if a small football player collides with a much larger football player, which of the
    15·1 answer
  • A 120 g coconut falls 12 m. What is the kinetic energy of the coconut just before it hits the ground?
    13·1 answer
  • How many pounds must a sandbag weigh to test if a safety net can absorb the proper amount of force
    10·2 answers
  • What is surface tension and what phase of matter creates it?
    15·1 answer
  • What is the connection between the x- and y-motions of a projectile?
    8·2 answers
  • In the diagram, the Sun, Earth, and Moon are in perfect alignment. Which two conclusions can be drawn based on the diagram?
    13·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!