Speed of the tip of the minute hand=V=0.0244 cm/s
Explanation:
The angular velocity of the minute hand is given by

T= time period of the minute hand=60 min=3600 s
so ω= 2 π/3600 rad/s
Now linear velocity v= r ω
r= radius of minute hand=14 cm
so v= 14 (2 π/3600)
V=0.0244 cm/s
Answer:
1.6 ft/min
Explanation:
Since trough is 10 ft long and water is filled at the rate of 12ft3/min. We can calculate the rate of water filled with respect to area:
= 12 / 10 = 1.2ft2/min
As the water level rises, so does the water surface, or the bottom side of the isosceles triangles. In fact we can calculate the bottom side when the trough is half foot deep:
= 3 / 2 = 1.5 ft
The rate of change in water level would be the same as calculating the height of the isosceles triangles knowing its base
= 1.2 * 2 / 1.5 = 1.6 ft/min
Kinetic energy = (1/2) (mass) x (speed)²
At 7.5 m/s, the object's KE is (1/2) (7.5) (7.5)² = 210.9375 joules
At 11.5 m/s, the object's KE is (1/2) (7.5) (11.5)² = 495.9375 joules
The additional energy needed to speed the object up from 7.5 m/s
to 11.5 m/s is (495.9375 - 210.9375) = <em>285 joules</em>.
That energy has to come from somewhere. Without friction, that's exactly
the amount of work that must be done to the object in order to raise its
speed by that much.
Answer:
a) 2.5 m/s²
b) 6.12 m/s
Explanation:
Tension of rope = T = 356N
Weight of material = W = 478 N
Distance from the ground = s = 7.5 m
Acceleration due to gravity = g = 9.81 m/s²
Mass of material = m = 478/9.81 = 48.72
Final velocity before the bundle hits the ground = v
Initial velocity = u = 0
Acceleration experienced by the material when being lowered = a
a) W-T = ma
⇒478-356 = 48.72×a

⇒a = 2.5 m/s²
∴ Acceleration achieved by the material is 2.5 m/s²
b) v²-u² = 2as
⇒v²-0 = 2×2.5×7.5
⇒v² = 37.5
⇒v = 6.12 m/s
∴ Velocity of the material before hitting the ground is 6.12 m/s
Answer:
a) 
b) 
Explanation:
Given data:
Electric field = 1.47 N/C
velocity of electron is 
distance of point b from point A is 0.55 m
we know that acceleration of particle is given as
a) for electron



from equation of motion we have



b) for proton


from equation of motion we have


