The reciprocal of the total resistance is equal to the sum of the reciprocals of the component resistances:
1/(120.7 Ω) = 1/<em>R₁</em> + 1/(221.0 Ω)
1/<em>R₁</em> = 1/(120.7 Ω) - 1/(221.0 Ω)
<em>R₁</em> = 1 / (1/(120.7 Ω) - 1/(221.0 Ω)) ≈ 265.9 Ω
Answer:
32 C > 32 F > 32 K
Explanation:
32 F, 32 C, 32 K
Let T1 = 32 F
T2 = 32 C
T3 = 32 K
Convert all the temperatures in degree C
The relation between F and C is given by
(F - 32) / 9 = C / 100
so, (32 - 32) / 9 = C / 100
C = 0
So, T1 = 32 F = 0 C
The relation between c and K is given by
C = K - 273 = 32 - 273 = - 241
So, T3 = 32 K = - 241 C
So, T 1 = 0 C, T2 = 32 c, T3 = - 241 C
Thus, T2 > T1 > T3
32C > 32 F > 32 K
The answer is C as there is more force on the left side ( excess of 5 N) which therefore pushed it to the right with a force of 5 N!
Answer:
The magnitude of angular acceleration is
.
Explanation:
Given that,
Initial angular velocity, 
When it switched off, it comes o rest, 
Number of revolution, 
We need to find the magnitude of angular acceleration. It can be calculated using third equation of rotational kinematics as :
So, the magnitude of angular acceleration is
. Hence, this is the required solution.
Answer:
25.6 m/s
Explanation:
Draw a free body diagram of the sled. There are two forces acting on the sled:
Normal force pushing perpendicular to the hill
Weight force pulling straight down
Take sum of the forces parallel to the hill:
∑F = ma
mg sin θ = ma
a = g sin θ
a = (9.8 m/s²) (sin 38.0°)
a = 6.03 m/s²
Given:
v₀ = 0 m/s
a = 6.03 m/s²
t = 4.24 s
Find: v
v = at + v₀
v = (6.03 m/s²) (4.24 s) + (0 m/s)
v = 25.6 m/s