Since you subtract 6 and you have to find the sixth term, you can do:
-6×5=-30 ( negative shows you're subtracting and since 75 is the first term, then you have to find the difference of the input/term 6-1, the sixth term minus the first)
75-30=45
You can check by actually continuing the pattern.
75,69,63,57,51,45,39......
Answer:
The value to the given expression is 8
Therefore ![\left[\frac{(10^4)(5^2)}{(10^3)(5^3)}\right]^3=8](https://tex.z-dn.net/?f=%5Cleft%5B%5Cfrac%7B%2810%5E4%29%285%5E2%29%7D%7B%2810%5E3%29%285%5E3%29%7D%5Cright%5D%5E3%3D8)
Step-by-step explanation:
Given expression is (StartFraction (10 Superscript 4 Baseline) (5 squared) Over (10 cubed) (5 cubed)) cubed
Given expression can be written as below
![\left[\frac{(10^4)(5^2)}{(10^3)(5^3)}\right]^3](https://tex.z-dn.net/?f=%5Cleft%5B%5Cfrac%7B%2810%5E4%29%285%5E2%29%7D%7B%2810%5E3%29%285%5E3%29%7D%5Cright%5D%5E3)
To find the value of the given expression:
![\left[\frac{(10^4)(5^2)}{(10^3)(5^3)}\right]^3=\frac{((10^4)(5^2))^3}{((10^3)(5^3))^3}](https://tex.z-dn.net/?f=%5Cleft%5B%5Cfrac%7B%2810%5E4%29%285%5E2%29%7D%7B%2810%5E3%29%285%5E3%29%7D%5Cright%5D%5E3%3D%5Cfrac%7B%28%2810%5E4%29%285%5E2%29%29%5E3%7D%7B%28%2810%5E3%29%285%5E3%29%29%5E3%7D)
( By using the property (
)

( By using the property
)

( By using the property
)

( By using the property
)
(By using the property
)

( By using the property
)


Therefore ![\left[\frac{(10^4)(5^2)}{(10^3)(5^3)}\right]^3=8](https://tex.z-dn.net/?f=%5Cleft%5B%5Cfrac%7B%2810%5E4%29%285%5E2%29%7D%7B%2810%5E3%29%285%5E3%29%7D%5Cright%5D%5E3%3D8)
Therefore the value to the given expression is 8
(-5, 7) - Quadrant II
(8 1/2, -4) - Quadrant IV
(0,5) - y axis
Step-by-step explanation:
There are two expressions
Price of video games: 4(25) = $100
Sale tax: 0.06(100) = $6
Total: $100 + $6 = $106
<span>So we need to explain how we know 21/30 is greater than 2/3. Well lets expand 2/3 by multiplying the numerator and the denumerator by 10. That way we get 20 / 30. Since 21/30 has 1/30 more than 20/30 we can clearly see that 21/30 is greater than 20/30 or 2/3.</span>