To solve this problem you must apply the proccedure shown below:
1. You have the following equation of a parabola, given in the problem above:
x<span>=1/16y^2
2. Then, based on the graph attached, you have:
p=y^2/4x
p=8^2/(4)(4)
p=64/16
p=4
3. The directrix is:
directrix=h-p
directrix=0-4
directrix=-4
The answer is:-4</span>
There are fewer people on the bus.
The start of it had at least 5
The end of it had at least 1
Answer:
y = 8
Step-by-step explanation:
8 + 24 = 32
32/4 = 8
Answer:
Anything in the form x = pi+k*pi, for any integer k
These are not removable discontinuities.
============================================================
Explanation:
Recall that tan(x) = sin(x)/cos(x).
The discontinuities occur whenever cos(x) is equal to zero.
Solving cos(x) = 0 will yield the locations when we have discontinuities.
This all applies to tan(x), but we want to work with tan(x/2) instead.
Simply replace x with x/2 and solve for x like so
cos(x/2) = 0
x/2 = arccos(0)
x/2 = (pi/2) + 2pi*k or x/2 = (-pi/2) + 2pi*k
x = pi + 4pi*k or x = -pi + 4pi*k
Where k is any integer.
If we make a table of some example k values, then we'll find that we could get the following outputs:
- x = -3pi
- x = -pi
- x = pi
- x = 3pi
- x = 5pi
and so on. These are the odd multiples of pi.
So we can effectively condense those x equations into the single equation x = pi+k*pi
That equation is the same as x = (k+1)pi
The graph is below. It shows we have jump discontinuities. These are <u>not</u> removable discontinuities (since we're not removing a single point).
Answer:
area of the sector = 360π cm²
Step-by-step explanation:
To calculate the area of the sector, we will follow the steps below;
First write down the formula for calculating the area of a sector.
If angle Ф is measured in degree, then
area of sector = Ф/360 × πr²
but if angle Ф is measured in radians, then
area of sector = 1/2 × r² × Ф
In this case the angle is measured in radiance, hence we will use the second formula
From the question given, radius = 15 cm and angle Ф = 8π/5
area of sector = 1/2 × r² × Ф
=1/2 × 15² × 8π/5
=1/2 ×225 × 8π/5
=360π cm²
area of the sector = 360π cm²