Find the volume of a smaller wedge cut from a sphere of radius 66 by two planes that intersect along a diameter at an angle of π
/6
1 answer:
Answer:
The answer is "
".
Step-by-step explanation:
please find the complete question in the attached file.
Let the sphere center be (0,0,0) and then let the intersection diameter lie all along the z-axis.
So one of the collision plans is the xz-plane the other is the path via an xz-plane angle.

All appropriate region could then be indicated in spherical coordinates

Calculating the volume:
![=\int_{0}^{\frac{\pi}{6}} \int_{0}^{\pi} \int_{0}^{a} \rho^2 \sin \phi d \rho d \phi d \theta\\\\ =\int_{0}^{\frac{\pi}{6}} d \theta \int_{0}^{\pi} \sin \phi d \int_{0}^{a} \rho^2 d \rho\\\\= [\theta]^{\frac{\pi}{6}}_{0} [-\cos \phi]^{\pi}_{0} [\frac{\rho^3}{3}]^{a}_{0}\\\\= \frac{\pi}{6} [1+1] \frac{a^3}{3}\\\\=\frac{\pi a^3}{9}](https://tex.z-dn.net/?f=%3D%5Cint_%7B0%7D%5E%7B%5Cfrac%7B%5Cpi%7D%7B6%7D%7D%20%5Cint_%7B0%7D%5E%7B%5Cpi%7D%20%5Cint_%7B0%7D%5E%7Ba%7D%20%5Crho%5E2%20%5Csin%20%5Cphi%20d%20%5Crho%20d%20%5Cphi%20d%20%5Ctheta%5C%5C%5C%5C%20%3D%5Cint_%7B0%7D%5E%7B%5Cfrac%7B%5Cpi%7D%7B6%7D%7D%20d%20%5Ctheta%20%5Cint_%7B0%7D%5E%7B%5Cpi%7D%20%5Csin%20%5Cphi%20d%20%5Cint_%7B0%7D%5E%7Ba%7D%20%5Crho%5E2%20d%20%5Crho%5C%5C%5C%5C%3D%20%5B%5Ctheta%5D%5E%7B%5Cfrac%7B%5Cpi%7D%7B6%7D%7D_%7B0%7D%20%5B-%5Ccos%20%5Cphi%5D%5E%7B%5Cpi%7D_%7B0%7D%20%5B%5Cfrac%7B%5Crho%5E3%7D%7B3%7D%5D%5E%7Ba%7D_%7B0%7D%5C%5C%5C%5C%3D%20%5Cfrac%7B%5Cpi%7D%7B6%7D%20%5B1%2B1%5D%20%5Cfrac%7Ba%5E3%7D%7B3%7D%5C%5C%5C%5C%3D%5Cfrac%7B%5Cpi%20a%5E3%7D%7B9%7D)
You might be interested in
Answer:
Exponential equations
Step-by-step explanation:
Answer:
mulltiply
Step-by-step explanation: you mulitply all
Answer:
62.8
Step-by-step explanation:
20 x П =
20 x 3.14 = 62.8
38 divided by 325= 38/325 fraction form and
0.11692307 decimal form
<u>Answer:</u>
136 cm²
<u>Steps:</u>
LA = π × 8 × √(15²+8²)
LA = π × 8 × √(225+64)
LA = π × 8 × √(289)
LA = π × 8 × 17
LA = π × 136 cm²