Answer:
The partial pressure of argon in the jar is 0.944 kilopascal.
Explanation:
Step 1: Data given
Volume of the jar of air = 25.0 L
Number of moles argon = 0.0104 moles
Temperature = 273 K
Step 2: Calculate the pressure of argon with the ideal gas law
p*V = nRT
p = (nRT)/V
⇒ with n = the number of moles of argon = 0.0104 moles
⇒ with R = the gas constant = 0.0821 L*atm/mol*K
⇒ with T = the temperature = 273 K
⇒ with V = the volume of the jar = 25.0 L
p = (0.0104 * 0.0821 * 273)/25.0
p = 0.00932 atm
1 atm =101.3 kPa
0.00932 atm = 101.3 * 0.00932 = 0.944 kPa
The partial pressure of argon in the jar is 0.944 kilopascal.
Answer: The correct statement is (A new substance is formed and the process can usually NOT be undone.)
Explanation:
A chemical reaction is simply defined as the reaction between two or more elements in which a new substance is formed and the process can usually not be undone. Different types of chemical reaction includes:
-- combination reaction: this occurs when two or more reactants form a product. For example: In the burning of coal, It combines with oxygen to produce carbon dioxide. Also in the burning of wood, carbon dioxide is given off and ashes are formed. Because new substance is being formed, they often can't be undone. The ashes formed can't be changed back into wood. Other types of chemical reaction are listed below.
-- Decomposition reaction
-- Single displacement reaction
-- Double displacement reaction
-- combustion reaction
-- Redox reaction
For the product of a chemical reaction to be undone (reversed), it has to undergo another chemical process different from the one that produced it.
Step 1: Write the unbalanced equation,
C₂H₆ + O₂ → CO₂ + H₂<span>O
There are 2 C at left hand side and 1 carbon at right hand side. So, multiply CO</span>₂ by 2 to balance C atoms at both side. So,
C₂H₆ + O₂ → 2 CO₂ + H₂O
Now, count number of H atoms at both sides. There are 6 H atoms at left hand side and 2 at right hand side. Multiply H₂O by 3 to balance H atoms.
C₂H₆ + O₂ → 2 CO₂ + 3 H₂O
At last, balance O atoms. There are 2 O atoms at left hand side and 3 O atoms at right hand side. Multiply O₂ with 1.5 (i.e. 3/2) to balance O atoms. i.e.
C₂H₆ + 3/2 O₂ → 2 CO₂ + 3 H₂O
Hence, the equation is balanced. If you want to make equation fraction free then multiply all equation with 2. i.e.
( C₂H₆ + 3/2 O₂ → 2 CO₂ + 3 H₂O ) × 2
2 C₂H₆ + 3 O₂ → 4 CO₂ + 6 H₂O
Since a water molecule is H2O, you would divide 126 hydrogen molecules by 2, and you would get 63. That means you have 63 double hydrogen molecules, and 58 oxygen molecules to pair up with them. So that means you could have 58 molecules of water, with 5 double hydrogen molecules, so basically 10 extra molecules of hydrogen along with the H2O molecules. Hope I helped! :)