Balanced equation : C. CH₄ + 4Cl₂⇒ CCl₄+ 4HCl
<h3>Further explanation </h3>
Equalization of chemical reactions can be done using variables. Steps in equalizing the reaction equation:
1. gives a coefficient on substances involved in the equation of reaction such as a, b, or c, etc.
2. make an equation based on the similarity of the number of atoms where the number of atoms = coefficient × index (subscript) between reactant and product
3. Select the coefficient of the substance with the most complex chemical formula equal to 1
Reaction
CH₄ + Cl₂⇒ CCl₄+ HCl
aCH₄ + bCl₂⇒ CCl₄+ cHCl
C, left=a, right=1⇒a=1
H, left=4a, right=c⇒4a=c⇒4.1=c⇒c=4
Cl, left=2b, right=4+c⇒2b=4+c⇒2b=4+4⇒2b=8⇒b=4
The equation becomes :
CH₄ + 4Cl₂⇒ CCl₄+ 4HCl
The answer is B. A mixture can be separated as shown in the example.<span />
The question is incomplete, here is the complete question:
Write a balanced chemical equation for each single replacement reaction that takes place in aqueous solution. write no reaction if a reaction does not occur
1.) Zn + PbCl₂
2.) Cu + Fe(NO₃)₂
<u>Answer:</u>
<u>For 1:</u> The reaction does occur.
<u>For 2:</u> The reaction does not occur.
<u>Explanation:</u>
Single displacement reaction is defined as the reaction in which more reactive element displaces a less reactive element.
The reactivity of metal is determined by a series known as reactivity series. The metals lying above in the series are more reactive than the metals which lie below in the series.

For the given options:
Zinc is more reactive than lead as it lies above in the series. So, it will displace lead from its chemical equation.
The chemical equation for the reaction of zinc and lead chloride follows:

Copper is less reactive than iron as it lies below in the series. So, it will not displace iron from its chemical equation.
The chemical equation for the reaction of copper and iron (II) nitrate follows:

Answer: b. It would happen faster at warmer air temperatures
Explanation:saw another site say this was the answer
Answer:
Solubility, Volatility, Viscosity and Surface Tension.