Answer:
The speed of the galaxy relative to the Earth is
.
Explanation:
We have,
(a) Wavelength emitted by light at distant galaxy is 434.1 nm. On earth, the wavelength of this light is measured to be 438.6 nm. It can be seen that the wavelength of light reduces as it reaches Earth. It is called Red shift. As per Doppler's effect, we can say that the galaxy is receding from the Earth.
(b) Let v is the speed of the galaxy relative to the Earth. It can be given by :

So, the speed of the galaxy relative to the Earth is
.
Answer:

Explanation:
We apply Newton's second law at the crate :
∑F = m*a (Formula 1)
∑F : algebraic sum of the forces in Newton (N)
m : mass in kilograms (kg)
a : acceleration in meters over second square (m/s²)
Data:
m=90kg : crate mass
F= 282 N
μk =0.351 :coefficient of kinetic friction
g = 9.8 m/s² : acceleration due to gravity
Crate weight (W)
W= m*g
W= 90kg*9.8 m/s²
W= 882 N
Friction force : Ff
Ff= μk*N Formula (2)
μk: coefficient of kinetic friction
N : Normal force (N)
Problem development
We apply the formula (1)
∑Fy = m*ay , ay=0
N-W = 0
N = W
N = 882 N
We replace the data in the formula (2)
Ff= μk*N = 0.351* 882 N
Ff= 309.58 N
We apply the formula (1) in x direction:
∑Fx = m*ax , ax=0
282 N - 309.58 N = 90*a
a= (282 N - 309.58 N ) / (90)
a= - 0.306 m/s²
Kinematics of the crate
Because the crate moves with uniformly accelerated movement we apply the following formula :
vf²=v₀²+2*a*d Formula (3)
Where:
d:displacement in meters (m)
v₀: initial speed in m/s
vf: final speed in m/s
a: acceleration in m/s²
Data
v₀ = 0.850 m/s
d = 0.75 m
a= - 0.306 m/s²
We replace the data in the formula (3)
vf²=(0.850)²+(2)( - 0.306 )(0.75 )


Answer:
It represents the change in charge Q from time t = a to t = b
Explanation:
As given in the question the current is defined as the derivative of charge.
I(t) = dQ(t)/dt ..... (i)
But if we take the inegral of the equation (i) for the time interval from t=a to
t =b we get
Q =∫_a^b▒〖I(t) 〗 dt
which shows the change in charge Q from time t = a to t = b. Form here we can say that, change in charge is defiend as the integral of current for specific interval of time.
Answer:
Yes, it's correct
Explanation:
Newton's second Law states that the acceleration of an object is proportional to the net force applied on it, according to the equation:

where
F is the net force on the object
m is the mass of the object
a is the acceleration of the object
We can re-arrange the previous equation in order to solve explicitely for a, the acceleration, and we find:

So, we see that the acceleration is proportional to the net force and inversely proportional to the mass of the object.