1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Elis [28]
3 years ago
12

Explain the characteristics of the Gypsum Hills regionIf we have a sample of silicon (Si) atoms that has 14 protons, 14 electron

s, and 18 neutrons
What is the name of this specific silicon isotope?

silicon-14
silicon-32
silicon-46
silicon-153
Physics
1 answer:
amid [387]3 years ago
8 0

Answer:

second one

Explanation:

You might be interested in
Josh did an experiment recording the changes in temperature in sand and water when exposed to a light source, and then when the
Marrrta [24]

Before going to solve this question first we have to understand specific heat capacity of a substance .

The specific heat of a substance is defined as amount of heat required to raise the temperature of 1 gram of substance through one degree Celsius. Let us consider a substance whose mass is m.Let Q amount of heat is given to it as a result of which its temperature is raised  from T to T'.

Hence specific heat  of a substance is calculated as-

                                              c= \frac{Q}{m[T'-T]}

Here c is the specific heat capacity.

The substance whose specific heat capacity is more will take more time to be heated up to a certain temperature as compared to a substance having low specific heat which is to be heated up to the same temperature.

As per the question John is experimenting on sand and water.Between sand and water,water has the specific heat 1 cal/gram per degree centigrade which is larger as compared to sand.Hence sand will be heated faster as compared to water.The substance which is heated faster will also cools faster.

From this experiment John concludes that water has more specific heat as compared to sand.

7 0
3 years ago
Read 2 more answers
If a short-wave radio station broadcasts on a frequency of 9.065 megahertz (MHz), what is the wavelength of
Yakvenalex [24]

Answer:

If the radio wave is on an FM station, these are in Megahertz. A megahertz is one ... Typical radio wave frequencies are about 88~108 MHz .

Explanation:

To calculate the wavelength of a radio wave, you will be using the equation: Speed of a wave = wavelength X frequency.

Since radio waves are electromagnetic waves and travel at 2.997 X

10

8

meters/second, then you will need to know the frequency of the radio wave.

If the radio wave is on an FM station, these are in Megahertz. A megahertz is one million hertz. If the radio wave is from an AM radio station, these are in kilohertz (there are one thousand hertz in a kilohertz). Hertz are waves/second. Hertz is usually the label for the frequency of electromagnetic waves.

To conclude, to determine the wavelength of a radio wave, you take the speed and divide it by the frequency.

Typical radio wave frequencies are about

88

~

108

MHz

. The wavelength is thus typically about

3.41

×

10

9

~

2.78

×

10

9

nm

.

7 0
2 years ago
A 3 kg penguin is pushed by his penguin friends who give him an initial speed vo at the top of a 30 m hill. The penguin is hopin
Strike441 [17]

Answer:

This question can be answered by using conversation of energy.

K_1 + U_1 = K_2 + U_2

\frac{1}{2}mv_{0}^2 + mgh_1 = 0 + mgh_2

\frac{1}{2}(3)v_0^2 + (3)(9.8)(30) = (3)(9.8)(45)\\\frac{1}{2}(3)v_0^2 = 441\\v_0^2 = 294\\v_0 = 17.14 m/s

Explanation:

Note that we take K_2 = 0 because we are looking for the minimum initial speed for the penguin to reach the top of the second hill. Any other speed more than this will already be enough for him.

7 0
3 years ago
A rod of mass M = 2.95 kg and length L can rotate about a hinge at its left end and is initially at rest. A putty ball of mass m
madam [21]

Answer:

Explanation:

angular momentum of the putty about the point of rotation

= mvR   where m is mass , v is velocity of the putty and R is perpendicular distance between line of velocity and point of rotation .

= .045 x 4.23 x 2/3 x .95 cos46

= .0837 units

moment of inertia of rod = ml² / 3 , m is mass of rod and l is length

= 2.95 x .95² / 3

I₁ = .8874 units

moment of inertia of rod + putty

I₁ + mr²

m is mass of putty and r is distance where it sticks

I₂  = .8874 + .045 x (2 x .95 / 3)²

I₂ = .905

Applying conservation of angular momentum

angular momentum of putty = final angular momentum of rod+ putty

.0837 = .905 ω

ω is final angular velocity of rod + putty

ω = .092 rad /s .

4 0
3 years ago
Which of these are point sources of water pollution?
bija089 [108]
Gas stations or sewage treatment facility
4 0
3 years ago
Other questions:
  • If a compound has a very low melting and boiling point, it is likely that the compound possesses mainly which type of intermolec
    5·1 answer
  • The index of refraction of a thin lens is 1.5. Its one surface is convex (radius of curvature 20 cm) and the other planar. Calcu
    15·1 answer
  • What is the effect of friction on a moving object
    14·1 answer
  • Which transition represents a time when water molecules are moving closer together?
    9·2 answers
  • A heating element on an electric range operating at 200. v has a resistance of 32.0 ohms. the current drawn by the element is
    5·1 answer
  • A​ blimp, suspended in the air at a height of 600 ​feet, lies directly over a line from a sports stadium to a planetarium. If th
    14·1 answer
  • What happens when a cow eats a taco?
    14·1 answer
  • What is the shape of a solid?
    10·1 answer
  • The number of wavelengths that pass a point each per second is:
    7·1 answer
  • What it 1 Newton force<br>​
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!