Answer : The limiting reagent is 
Solution : Given,
Moles of methane = 2.8 moles
Moles of
= 5 moles
Now we have to calculate the limiting and excess reagent.
The balanced chemical reaction is,

From the balanced reaction we conclude that
As, 2 mole of
react with 1 mole of 
So, 5 moles of
react with
moles of 
From this we conclude that,
is an excess reagent because the given moles are greater than the required moles and
is a limiting reagent and it limits the formation of product.
Hence, the limiting reagent is 
I dont understand life, for example, look at my username.
The equilibrium constant (K) : 11.85
<h3>Further explanation</h3>
Given
Reaction
N₂(g) + 3H₂(g) ⇒ 2NH₃(g)
Required
K(equilibrium constant)
Solution
The equilibrium constant (K) is the value of the concentration product in the equilibrium
The equilibrium constant based on concentration (K) in a reaction
pA + qB -----> mC + nD
![\tt K=\dfrac{[C]^m[D]^n}{[A]^p[B]^q}](https://tex.z-dn.net/?f=%5Ctt%20K%3D%5Cdfrac%7B%5BC%5D%5Em%5BD%5D%5En%7D%7B%5BA%5D%5Ep%5BB%5D%5Eq%7D)
For the reaction above :
![\tt K=\dfrac{[NH_3]^2}{[N_2][H_2]^3}\\\\K=\dfrac{0.1^2}{0.25\times 0.15^3}\\\\K=11.85](https://tex.z-dn.net/?f=%5Ctt%20K%3D%5Cdfrac%7B%5BNH_3%5D%5E2%7D%7B%5BN_2%5D%5BH_2%5D%5E3%7D%5C%5C%5C%5CK%3D%5Cdfrac%7B0.1%5E2%7D%7B0.25%5Ctimes%200.15%5E3%7D%5C%5C%5C%5CK%3D11.85)