I’m sure it’s c, I’m just trying to answer my first question, I’m pretty good at science, buh I’m yet to learn this
The first two ionization energy of nickel are expressed as:
Ni(g) = Ni^+(g) + e^- Ni^+(g) = Ni^2+(g) + e^-
IOnization energy os the energy that is neccessary in order to remove one mole of electrons from an atom.
Hope this helps.
Ionic compounds are those compounds which are made up of ions. These ions can exist as positive or negative ions. Those ions which has tendency to lose electrons are said to be cations (positive ions) such as metals and those ions which has tendency to gain electrons are said to be anions (negative ions) such as non-metals.
The formula for ionic compounds are given as:
First, the symbols of the cation and anion should be identified. After that, charge on the cation and anion should be identified. Write the chemical formula with the help of drop and swap method.
Now,
The chemical symbols for Aluminium is
and for chlorine is
.
The charge on
is +3 and on
is -1, neglect the positive and negative signs and by using drop and swap method i.e. the charge on the aluminium will go as a subscript of the chlorine and the charge on the chlorine will go as a subscript of the aluminium which is shown in the image.
Thus, the chemical formula between
and
is
.
To know the electrostatic force between two charges or between two ions, you can use the Coulomb's Law. The equation is F = k*q1*q1/r^2, where F is the electrostatic force, q1 and q2 are the charger for Na and Cl, and r is the distance between the centers of both atoms. In literature, the distance is 0.5 nm or 0.5 x 10^-9 meters. The charge for Na+ and Cl- is the same magnitude but different in sign. Since Na+ is a cation, its charge is +1.603x10^-19 C (the charge of an electron). For Cl- being an anion, its charge is -1.603x10^-19 C. The constant k is an empirical value equal to 9x10^9. Using the formula:
F = (9x10^9)(+1.603x10^-19)(-1.603x10^-19)/(0.5 x 10^-9)^2
F = -9.25 x 10^-10 Newtons
The negative denotes that the net force is more towards the Cl- ion.