Answer:
v = √k/m x
Explanation:
We can solve this exercise using the energy conservation relationships
starting point. Fully compressed spring
Em₀ =
= ½ k x²
final point. Cart after leaving the spring
= K = ½ m v²
Em₀ = Em_{f}
½ k x² = ½ m v²
v = √k/m x
Light intensity and distance is
interrelated. When the distance changes, the intensity of light changes. This relationship
is called inverse-square relationship. The inverse-square relationship refers
to the fact that when distance changes, light intensity also changes: inverse
because when distance decreases, light density increases and when distance
increases, the latter decreases; square refers to the fact that light intensity
and distance is not a one-to-one relationship.
Answer:
gravity
Explanation:
there eould be a different gravitational strenght on both of the planets causing it to weigh more, or less
Answer:
Ts=51.83C
Explanation:
First we calculate the surface area of the cylinder, neglecting the top and bottom covers as indicated by the question
Cilinder Area= A=πDL
L=200mm=0.2m
D=20mm=0.02m
A=π(0.02m)(0.2m)=0.012566m^2
we use the equation for heat transfer by convection
q=ha(Ts-T)
q= heat=2Kw=2000W
A=Area=0.012566m^2
Ts=surface temperature
T=water temperature=20C
Solving for ts
Ts=q/(ha)+T
Ts=2000/(5000*0.012566m^2)+20=51.83C
The exact magnification of the objects is calculated by dividing the cinema. We calculate it by diving the erect image size by the object size. From the given above, we find the exact magnification by dividing 5.0 cm by 1.0 cm. Thus, the answer would be 5.