Let's divide the three experiments: The experiment with 10.00 mL of water is A), the experiment with 15.00 mL is B), and the experiment with 25.00 mL is C).
- (1) Now let's calculate the experimental density of each experiment. Density (ρ) is equal to the mass divided by the volume, thus:

- (2)To calculate the average density, we add each density and divide the result by the number of experiments (in this case 3):

- (3) The percent error is calculated by dividing the absolute value of the substraction of the theorethical and experimental values, by the theoretical value, times 100:
%error=
%error=
%error=2.44 %
It is a mixture because the compounds that make up air e.g. oxygen (o2), Carbon dioxide (co2) and the most important Nitrogen which is an element and makes up 78.09% of air are not chemically bound in the way that compounds are because they can be separated easily and there has been no change in state to any of the compounds or elements in air!hope this helpful!
Answer:
mass= 14kg
Explanation:
density= mass/volume
so that means mass= volume x density
m= 2kg/m³ x 7m³
m= 14 kg
Hope this helps
Answer: C) Non-metals can share pairs of electrons and form covalent bonds
Explanation: The principal reason why it is non-metals that can form covalent bonds is because of their electronegativities. Electronegativity is the tendency of an atom to attract electrons towards itself.
The participating atoms in a covalent bond have to be able to hold the shared electron in place & it is this attraction towards the centre of each participating atom that holds the electrons in place. Metals aren't electronegative, they don't attract electrons towards each other, they'd rather even push the electrons away from themselves (electropositive) to be stable. The closest concept of metals to shared electrons is in metallic bonding, where metals push and donate their valence electrons to an electron cloud which is free to move around the bulk of the metallic structure. But this is nowhere near the type of bonding that exist in covalent bonds.
<span>Exothermic reaction evolves energy due to which products get hot...</span>