Complete Question
The angular speed of an automobile engine is increased at a constant rate from 1120 rev/min to 2560 rev/min in 13.8 s.
(a) What is its angular acceleration in revolutions per minute-squared
(b) How many revolutions does the engine make during this 20 s interval?
rev
Answer:
a

b

Explanation:
From the question we are told that
The initial angular speed is 
The angular speed after
is 
The time for revolution considered is
Generally the angular acceleration is mathematically represented as

=>
=> 
Generally the number of revolution made is
is mathematically represented as

=> 
=> 
Answer:
Sound waves are produced when something vibrates.
Explanation:
The vibrating body causes the medium (water, air, etc.) Vibrations in air are called traveling longitudinal waves, which we can hear. Sound waves consist of areas of high and low pressure called compressions and rarefactions, respectively.
Sorry if this if wrong
The original kinetic energy will be 0 J and the final kinetic energy will be 7500 J and the amount of work utilized will be similar to the final kinetic energy i.e., 7500 J.
<u>Explanation:</u>
As it is known that the kinetic energy is defined as the energy exhibited by the moving objects. So the kinetic energy is equal to the product of mass and square of the velocity attained by the car. Thus,

So the initial kinetic energy will be the energy exerted by the car at the initial state when the initial velocity is zero. Thus the initial kinetic energy will be zero.
The final kinetic energy is
= 7500 J
As the work done is the energy required to start the car from zero velocity to 5 m/s velocity.
Work done = Final Kinetic energy - Initial Kinetic energy
Thus the work utilized for moving the car is
Work done = 7500 J - 0 J = 7500 J
Thus, the initial kinetic energy of the car is zero, the final kinetic energy is 7500 J and the work utilized by the car is also 7500 J.
Answer is A of course lol Fire needs oxygen as an essential fuel to burn.
Answer:
q=1.7346×10⁻⁶C
Explanation:
Since the electric field is perpendicular to the bottom and top of the cube,the total flux is equals the flux over the top of surface plus the flex over the lower surface
Ф(total)=Ф₃₀₀+Ф₂₃₀
But the flux is given by Ф=E.A=EACos(θ) where θ is the angle between Area vector and electric field
So
Ф(total)=E₃₀₀A Cos(180)+E₂₃₀ACos(0)
Ф(total)=A(E₃₀₀ - E₂₃₀)
The total flux is given by Gauss Law as:
Ф(total)=q/ε₀
q=ε₀Ф(total)
q=ε₀(A(E₃₀₀ - E₂₃₀))
Substitute the given values
q=(8.85×10⁻¹²){(70²)(100 - 60)}
q=1.7346×10⁻⁶C