Answer:
1) 50 facing towards the right
2) 150 facing right
3) 200 facing right
4) 0- no direction
5) 50- facing left
6) 50 facing right
Explanation:
forces in opposite directions and equal magnitudes counteract each other. in number 2 they face the same direction so they would just be added. in number 4 they oppose each other so would be subtracted
The planetary temperature energy balance is obtained by radiating back the absorbed radiation energy from outer-space, by the planet and thus acquiring thermal equilibrium.
What is the process of attaining thermal equilibrium by Earth?
The Stefan-Boltzmann law states that the more the temperature a planet has, the more it will radiate out to reach thermal equilibrium.
We know that outer space contains large masses of radiative energy freely distributed in its vast expanse. A small fraction of this energy is absorbed by the Earth through the atmosphere, surface land, clouds etc.
Now, radiative balance is achieved when a planet's surface continuously warms up until it reaches its peak at which point the same amount of absorbed energy can then be radiated back to space. The relative amount of energy radiated back by a planet is dependent upon the size of the planet.
A colder planet relatively absorbs lower amount of radiation energy from space. In some time, as the planet heats up enough, the energy is radiated back to the space attaining thermal equilibrium.
Learn more about Stefan-Boltzmann law here:
<u>brainly.com/question/14919749</u>
#SPJ4
Answer:
Equation for SHM can be written
V = w A cos w t where w is the angular frequency and the velocity is a maximum at t = 0
V1 = w1 A cos w1 t
V2 = w2 A cos w2 t
V2 / V1 = w2 / w1 since cos X t = 1 if t = zero
V2 / V1 = 2 pi f2 / (2 pi f1) = f2 / f1 = T1 / T2
If the velocity is twice as large the period will be 1/2 long
The electromagnetic force<span> holds atoms and molecules together.
like a magnet's pull on steel.</span>
Since momentum is a vector quantity, take any direction as positive and other as negative. Answer won't change.