Answer: The correct answer is option (C).
Explanation:
As it is given in the problem, the path of a meteor passing Earth is affected by its gravitational force and falls to Earth's surface. Another meteor of the same mass falls to Jupiter's surface due to its gravitational force.
According to Newton's law of universal gravitational, every particle attracts every other particles in the universe with the gravitational force which is directly proportional to the product of their masses and inversely proportional to the square of the distance between them.
The Jupiter is the most massive planet in the solar system. It is also the largest planet in the solar system. The gravity of Jupiter on its surface is 2.4 times that of surface gravity of the Earth.
If a person weighs 100 pounds on the Earth then he would weigh 240 pounds on Jupiter.
Therefore, the correct answer is option (C), the meteor falls to Jupiter faster due to its greater gravitational force.
Answer
sand and water is an example of a mixture made of parts that can easily be separated
Explatnation
mixture is a material which is formed by mixing two or more different types of materials. No chemical reaction occurs.During combination of two or more type of material to form a mixture.
Example of mixture are
oil and water
sand and water
The magma in the wake the core
At the most distant point, the size of the speed is zero (0 m/s). This is a direct result of preservation of vitality. PE = KE. The most distant far from the harmony position is the maximum PE. Hence it can have no KE. No KE implies no speed since KE = .5mv2
My answer -
the corona,
the sun's outer layer, reaches temperatures of up to 2 million degrees
Fahrenheit (1.1 million Celsius). At this level, the sun's gravity can't
hold on to the rapidly moving particles, and it streams away from the
star.
The sun's activity shifts over the course of its 11-year cycle, with
sun spot numbers, radiation levels, and ejected material changing over
time. These alterations affect the properties of the solar wind,
including its magnetic field properties, velocity, temperature and
density. The wind also differs based on where on the sun it comes from
and how quickly that portion is rotating.
The velocity of the solar wind
is higher over coronal holes, reaching speeds of up to 500 miles (800
kilometers) per second. The temperature and density over coronal holes
are low, and the magnetic field is weak, so the field lines are open to
space. These holes occur at the poles and low latitudes, and reach their
largest when activity on the sun is at its minimum. Temperatures in the
fast wind can reach up to 1 million degrees F (800,000 C).
At the coronal streamer belt around the equator, the solar wind travels
more slowly, at around 200 miles (300 km) per second. Temperatures in
the slow wind reach up to 2.9 million F (1.6 million C).
p.s
Glad to help you and if you need anything else on brainly let me know so I can elp you again have an AWESOME!!! :^)