1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
polet [3.4K]
3 years ago
8

write a net ionic equation for the reaction that occurs when aqueous solutions of perchloric acid and potassium hydroxide are co

mbined.
Chemistry
1 answer:
BaLLatris [955]3 years ago
3 0

Answer:

H⁺(aq) + OH⁻(aq) ⇒ H₂O(l)

Explanation:

Let's consider the molecular equation that occurs when aqueous solutions of perchloric acid and potassium hydroxide are combined. This is a neutralization reaction.

HClO₄(aq) + KOH(aq) ⇒ KClO₄(aq) + H₂O(l)

The complete ionic equation includes all the ions and molecular species.

H⁺(aq) + ClO₄⁻(aq) + K⁺(aq) + OH⁻(aq) ⇒ K⁺(aq) + ClO₄⁻(aq) + H₂O(l)

The net ionic equation includes only the ions that participate in the reaction and the molecular species.

H⁺(aq) + OH⁻(aq) ⇒ H₂O(l)

You might be interested in
What mass of Fe(OH)3 is produced when 35 mL of 0.250 M Fe(NO3)3 solution is mixed with 55 mL of a 0.180 M
Zina [86]

Answer:

0.35 g.

Explanation:

We'll begin by calculating the number of mole of Fe(NO3)3 in 35 mL of 0.250 M Fe(NO3)3 solution.

This is illustrated below:

Molarity of Fe(NO3)3 = 0.250 M

Volume = 35 mL = 35/1000 = 0.035 L

Mole of Fe(NO3)3 =?

Molarity = mole /Volume

0.250 = mole of Fe(NO3)3 / 0.035

Cross multiply

Mole of Fe(NO3)3 = 0.25 x 0.035

Mole of Fe(NO3)3 = 8.75×10¯³ mole

Next, we shall determine the number of mole of KOH in 55 mL of 0.180 M

KOH solution. This is illustrated below:

Molarity of KOH = 0.180 M

Volume = 55 mL = 55/1000 = 0.055 L

Mole of KOH =.?

Molarity = mole /Volume

0.180 = mole of KOH /0.055

Cross multiply

Mole of KOH = 0.180 x 0.055

Mole of KOH = 9.9×10¯³ mole.

Next, we shall write the balanced equation for the reaction. This is given below:

3KOH + Fe(NO3)3 —> Fe(OH)3 + 3KNO3

From the balanced equation above,

3 moles of KOH reacted with 1 mole of Fe(NO3)3 to produce 1 mole of Fe(OH)3.

Next, we shall determine the limiting reactant. This can be obtained as follow:

From the balanced equation above,

3 moles of KOH reacted with 1 mole of Fe(NO3)3.

Therefore, 9.9×10¯³ mole of KOH will react with = (9.9×10¯³ x 1)/3 = 3.3×10¯³ mole of Fe(NO3)3.

From the above illustration, we can see that only 3.3×10¯³ mole out of 8.75×10¯³ mole of Fe(NO3)3 given is needed to react completely with 9.9×10¯³ mole of KOH.

Therefore, KOH is the limiting reactant and Fe(NO3)3 is the excess reactant.

Next, we shall determine the number of mole of Fe(OH)3 produced from the reaction.

In this case, we shall use the limiting reactant because it will give the maximum yield of Fe(OH)3 as all of it is consumed in the reaction.

The limiting reactant is KOH and the mole of Fe(OH)3 produce can be obtained as follow:

From the balanced equation above,

3 moles of KOH reacted to produce 1 mole of Fe(OH)3.

Therefore, 9.9×10¯³ mole of KOH will react to produce = (9.9×10¯³ x 1)/3 = 3.3×10¯³ mole of Fe(OH)3.

Finally, we shall convert 3.3×10¯³ mole of Fe(OH)3 to grams. This can be obtained as follow:

Molar mass of Fe(OH)3 = 56 + 3(16 + 1) = 56 + 3(17) = 107 g/mol

Mole of Fe(OH)3 = 3.3×10¯³ mole

Mass of Fe(OH)3 =?

Mole = mass /Molar mass

3.3×10¯³ = Mass of Fe(OH)3 / 107

Cross multiply

Mass of Fe(OH)3 = 3.3×10¯³ x 107

Mass of Fe(OH)3 = 0.3531 ≈ 0.35 g.

Therefore, 0.35 g of Fe(OH)3 was produced from the reaction.

8 0
3 years ago
Which one of the following solutions would have a pH value greater than 7?
Sliva [168]

Answer:

The 2 one

Explanation:

7 0
2 years ago
Sodium tert-butoxide (NaOC(CH3)3) is classified as bulky and acts as Bronsted Lowry base in the reaction. It is reacted with 2-c
IceJOKER [234]

Answer:but-1-ene

Explanation:This is an E2 elimination reaction .

Kindly refer the attachment for complete reaction and products.

Sodium tert-butoxide is a bulky base and hence cannot approach the substrate 2-chlorobutane from the more substituted end and hence major product formed here would not be following zaitsev rule of elimination reaction.

Sodium tert-butoxide would approach from the less hindered side that is through the primary centre and hence would lead to the formation of 1-butene .The major product formed in this reaction would be 1-butene .

As the mechanism of the reaction is E-2 so it will be a concerted mechanism and as sodium tert-butoxide will start abstracting the primary hydrogen through the less hindered side simultaneously chlorine will start leaving. As the steric repulsion in this case is less hence the transition state is relatively stabilised and leads to the formation of a kinetic product 1-butene.

Kinetic product are formed when reactions are dependent upon rate and not on thermodynamical stability.

2-butene is more thermodynamically6 stable as compared to 1-butene  

The major product formed does not follow the zaitsev rule of forming a more substituted alkene as sodium tert-butoxide cannot approach to abstract the secondary proton due to steric hindrance.

5 0
3 years ago
Which of the following are considered pure substances?
Helen [10]
B.Elements

Explanation: they cannot be separated
8 0
3 years ago
The vapor pressure of pure water at 25 °c is 23.8 torr. What is the vapor pressure (torr) of water above a solution prepared by
maxonik [38]

The vapour pressure of the solution is 23.4 torr.

Use <em>Raoult’s Law</em> to calculate the vapour pressure:  

<em>p</em>₁ = χ₁<em>p</em>₁°  

where  

χ₁ = the mole fraction of the solvent  

<em>p</em>₁ and <em>p</em>₁° are the vapour pressures of the solution and of the pure solvent  

The formula for vapour pressure lowering Δ<em>p</em> is  

Δ<em>p</em> = <em>p</em>₁° - <em>p</em>₁  

Δ<em>p</em> = <em>p</em>₁° - χ₁<em>p</em>₁° = p₁°(1 – χ₁) = χ₂<em>p</em>₁°  

where χ₂ is the mole fraction of the solute.  

<em>Step 1</em>. Calculate the <em>mole fraction of glucose </em>

<em>n</em>₂ = 18.0 g glu × (1 moL glu/180.0 g glu) = 0.1000 mol glu  

<em>n</em>₁ = 95.0 g H_2O × (1 mol H_2O/18.02 g H_2O) = 5.272 mol H_2O  

χ₂ = <em>n</em>₂/(<em>n</em>₁ + n₂) = 0.1000/(0.1000 + 5.272) = 0.1000/5.372 = 0.018 62  

<em>Step 2</em>. Calculate the <em>vapour pressure lowering</em>  

Δ<em>p</em> = χ₂<em>p</em>₁° = 0.018 62 × 23.8 torr = 0.4430 torr  

<em>Step 3</em>. Calculate the <em>vapour pressure</em>  

<em>p₁</em> = <em>p</em>₁° - Δ<em>p</em> = 23.8 torr – 0.4430 torr = 23.4 torr

3 0
3 years ago
Other questions:
  • Gt4rgbrbrtbr\t?<br>frehjkgbrtnvboror
    11·1 answer
  • What is the mass, in grams, of 1.26 mol of water, H2O?
    8·1 answer
  • How many molecules are in 12 grams of methane (CH 4 )?
    14·2 answers
  • PLEASE HELP ME PLEASE I'M BEGGING YOU
    8·2 answers
  • In ionic bonding an arrow is often drawn on the diagram. What does
    11·1 answer
  • Galaxies are composed of many different objects. What kind ok objects make up most of the visible matter in a galaxy?
    6·2 answers
  • Ammonia can be made by reaction of water with magnesium nitride as shown by the following unbalanced equation: Mg3N2(s) + H2O(l)
    12·1 answer
  • A team of geologists is surveying on a mountain. They come across a newly formed stream. The stream is flowing at an average rat
    12·1 answer
  • The table shows the average distance between the molecules of a substance in the solid, liquid, and gaseous states.
    10·1 answer
  • Describe the components of a speaker and explain how it produces sound. In particular, explain how the force on a current-carryi
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!