it has less tightly bound electrons, is able to lose electron easily as compare to metal B at it has 4 unpaired electron in 3d sub-shell.
Answer: The equilibrium constant for the given reaction is 0.0421.
Explanation:

Concentration of
= 0.0095 M
Concentration of
= 0.020 M
Concentration of
= 0.020 M
The expression of the equilibrium constant is given as:
![K_c=\frac{[PCl_3][Cl_2]}{[PCl_5]}=\frac{0.020 M\times 0.020 M}{0.0095 M}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BPCl_3%5D%5BCl_2%5D%7D%7B%5BPCl_5%5D%7D%3D%5Cfrac%7B0.020%20M%5Ctimes%200.020%20M%7D%7B0.0095%20M%7D)
(An equilibrium constant is an unit less constant)
The equilibrium constant for the given reaction is 0.0421.
Answer:
1) all matter is made up of atoms and molecules 2) these tiny particles are always in motion; the higher the temp. the faster they move 3) at the same temp., heavier particles move more slowly then small particles
Explanation:
Answer:
y1 = 0.3162
y2 = 0.6838
Explanation:
ok let us begin,
first we would be defining the parameters;
at 25°C;
1-propanol P1° = 20.90 Torr
2-propanol P2° = 45.2 Torr
From Raoults law:
P(1-propanol) = P⁰ × X(1-propanol)
P(1-propanol) = 20.9 torr × 0.45 = 9.405
P(1-propanol) = 9.405 torr
Also P(2-propanol) = P⁰ × X(2-propanol)
P(2-propanol) = 45.2 torr × 0.45
P(2-propanol) = 20.34 torr
but the total pressure = sum of individual pressures
total pressure = 9.405 + 20.34
total pressure = 29.745 torr
given that y1 and y2 represent the mole fraction of each in the vapor phase
y1 = P1 / total pressure
y1 = 9.405/29.745
y1 = 0.3162
Since y1 + y2 = 1
y2 = 1 - y1
∴ y2 = 1 - 0.3162
y2 = 0.6838
cheers, i hope this helps.
I think the correct answer is b