Answer:
[SO2Cl2] = = 0.015 M
[SO2] = = 0.0027 M
[Cl2] = = 0.0027 M
Q = = = 4.8 × 10−4
No. Q < Kc, so reaction will shift to the right.
Explanation:
Answer:
<span>D) combine light nuclei
</span>
Explanation:
Fission and fusion both deal with the alteration of atoms in order to produce energy. However, they are actually opposite processes, this is because:
1- Fission occurs when an atomic nucleus is split/divided into two forming two atoms
2- Fusion occurs when two light atomic nuclei combine together to form a single atom.
Hope this helps :)
213034 torr is the osmotic pressure.
Explanation:
osmotic pressure is calculated by the formula:
osmotic pressure= iCrT
where i= no. of solute
c= concentration in mol/litre
R= Universal Gas constant
T = temp
It is given that solution is 3% which is 3gms in 100 ml.
let us calculate the concentration in moles/litre
3gm/100ml*1000ml/1L*1mol NaCl/55.84g NaCl
= 5.372 gm/litre
Putting the values in the formula, Temp in Kelvin 318.5K
osmotic pressure= 2*5.372*0.083 * 318.5 Gas constant 0.083
= 284.023 bar or 213018 torr. c= 5.372 moles/L
i=2 for NaCl
Answer: El carbono, que en estado sólido, puede adoptar muchas formas alotrópicas, siendo las más comunes el diamante (red tridimensional) y el grafito (láminas), aunque también puede formar nanoestructuras en forma de balón de fútbol (fullerenos) o tubos diminutos (nanotubos de carbono), entre otras posibilidades.
Explanation:
Answer:
2. 181.25 K.
3. 0.04 atm.
Explanation:
2. Determination of the temperature.
Number of mole (n) = 2.1 moles
Pressure (P) = 1.25 atm
Volume (V) = 25 L
Gas constant (R) = 0.0821 atm.L/Kmol
Temperature (T) =?
The temperature can be obtained by using the ideal gas equation as illustrated below:
PV = nRT
1.25 × 25 = 2.1 × 0.0821 × T
31.25 = 0.17241 × T
Divide both side by 0.17241
T = 31.25 / 0.17241
T = 181.25 K
Thus, the temperature is 181.25 K.
3. Determination of the pressure.
Number of mole (n) = 10 moles
Volume (V) = 5000 L
Temperature (T) = –10 °C = –10 °C + 273 = 263 K
Gas constant (R) = 0.0821 atm.L/Kmol
Pressure (P) =?
The pressure can be obtained by using the ideal gas equation as illustrated below:
PV = nRT
P × 5000 = 10 × 0.0821 × 263
P × 5000 = 215.923
Divide both side by 5000
P = 215.923 / 5000
P = 0.04 atm
Thus, the pressure is 0.04 atm