Answer:
Hydrogen: -141 kJ/g
Methane: -55kJ/g
The energy released per gram of hydrogen in its combustion is higher than the energy released per gram of methane in its combustion.
Explanation:
According to the law of conservation of the energy, the sum of the heat released by the combustion and the heat absorbed by the bomb calorimeter is zero.
Qc + Qb = 0
Qc = -Qb [1]
We can calculate the heat absorbed by the bomb calorimeter using the following expression.
Q = C . ΔT
where,
C is the heat capacity
ΔT is the change in the temperature
<h3>Hydrogen</h3>
Qc = -Qb = -C . ΔT = -(11.3 kJ/°C) . (14.3°C) = -162 kJ
The heat released per gram of hydrogen is:

<h3>Methane</h3>
Qc = -Qb = -C . ΔT = -(11.3 kJ/°C) . (7.3°C) = -82 kJ
The heat released per gram of methane is:

Answer:
True
Explanation:
Because Carbon is the primary component of macromolecules, including proteins, lipids, nucleic acids, and carbohydrates.
Answer:
The sun shines with equal intensity on a farm field, an asphalt road and the ocean. So basically asphalt road are heated the most during the day
Explanation:
The heat of water is more than the specific heat of sand.
Therefore sand is hot.
.Water is reflecting solar radiation.
The land retains more heat since the land absorb solar radiation.
Therefore the land surfaces warm faster.
Since water is a slow conductor of heat, it need more energy than the sand. so its temperature is increasing. soil loses heat faster.
The ocean heats slower than land , the land air is more warmer than lean air. After the sun set the land loses heat quickly .The air above it cools.
<u>Answer:</u> The concentration of unknown phosphoric acid solution is 0.034 M
<u>Explanation:</u>
To calculate the concentration of acid, we use the equation given by neutralization reaction:

where,
are the n-factor, molarity and volume of acid which is 
are the n-factor, molarity and volume of base which is NaOH.
We are given:

Putting values in above equation, we get:

Hence, the concentration of unknown phosphoric acid solution is 0.034 M