1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
yawa3891 [41]
3 years ago
13

HELP! Need the correct answer ASAP! Thanks

Engineering
2 answers:
Bess [88]3 years ago
7 0

Answer:

i think it might be answer b

Explanation:

den301095 [7]3 years ago
3 0

Answer:

I also think that it might be b

because these jobs are in there

  1. aerospace engineering and operations technologist and teshnicians
  2. agricultural technicians
  3. air traffic controllers
  4. air craft mechanics and service technicians
You might be interested in
Hello Averyone Subs Chanel Me please "RezaDarmawangsa "<br>Thanks !!​
Yanka [14]

Answer:

what kind of content? I need to know

4 0
2 years ago
Consider this example of a recurrence relation. A police officer needs to patrol a gated community. He would like to enter the g
SashulF [63]

Answer:

the police officer cruise each streets precisely once and he enters and exit with the same gate.

Explanation:

NB: kindly check below for the attached picture.

The term ''Euler circuit'' can simply be defined as the graph that shows the edge of K once in a finite way by starting and putting a stop to it at the same vertex.

The term "Hamiltonian Circuit" is also known as the Hamiltonian cycle which is all about a one time visit to the vertex.

Here in this question, the door is the vertex and the road is the edge.

The information needed to detemine a Euler circuit and a Hamilton circuit is;

"the police officer cruise each streets precisely once and he enters and exit with the same gate."

Check attachment for each type of circuit and the differences.

7 0
3 years ago
Two identical billiard balls can move freely on a horizontal table. Ball a has a velocity V0 and hits balls B, which is at rest,
Lyrx [107]

Answer:

Velocity of ball B after impact is 0.6364v_0 and ball A is 0.711v_0

Explanation:

v_0 = Initial velocity of ball A

v_A=v_0\cos45^{\circ}

v_B = Initial velocity of ball B = 0

(v_A)_n' = Final velocity of ball A

v_B' = Final velocity of ball B

e = Coefficient of restitution = 0.8

From the conservation of momentum along the normal we have

mv_A+mv_B=m(v_A)_n'+mv_B'\\\Rightarrow v_0\cos45^{\circ}+0=(v_A)_n'+v_B'\\\Rightarrow (v_A)_n'+v_B'=\dfrac{1}{\sqrt{2}}v_0

Coefficient of restitution is given by

e=\dfrac{v_B'-(v_A)_n'}{v_A-v_B}\\\Rightarrow 0.8=\dfrac{v_B'-(v_A)_n'}{v_0\cos45^{\circ}}\\\Rightarrow v_B'-(v_A)_n'=\dfrac{0.8}{\sqrt{2}}v_0

(v_A)_n'+v_B'=\dfrac{1}{\sqrt{2}}v_0

v_B'-(v_A)_n'=\dfrac{0.8}{\sqrt{2}}v_0

Adding the above two equations we get

2v_B'=\dfrac{1.8}{\sqrt{2}}v_0\\\Rightarrow v_B'=\dfrac{0.9}{\sqrt{2}}v_0

\boldsymbol{\therefore v_B'=0.6364v_0}

(v_A)_n'=\dfrac{1}{\sqrt{2}}v_0-0.6364v_0\\\Rightarrow (v_A)_n'=0.07071v_0

From the conservation of momentum along the plane of contact we have

(v_A)_t'=(v_A)_t=v_0\sin45^{\circ}\\\Rightarrow (v_A)_t'=\dfrac{v_0}{\sqrt{2}}

v_A'=\sqrt{(v_A)_t'^2+(v_A)_n'^2}\\\Rightarrow v_A'=\sqrt{(\dfrac{v_0}{\sqrt{2}})^2+(0.07071v_0)^2}\\\Rightarrow \boldsymbol{v_A'=0.711v_0}

Velocity of ball B after impact is 0.6364v_0 and ball A is 0.711v_0.

5 0
3 years ago
Air at 400kPa, 970 K enters a turbine operating at steady state and exits at 100 kPa, 670 K. Heat transfer from the turbine occu
Sonja [21]

Answer:

a

The rate of work developed is \frac{\r W}{\r m}= 300kJ/kg

b

The rate of entropy produced within the turbine is   \frac{\sigma}{\r m}=  0.0861kJ/kg \cdot K

Explanation:

     From  the question we are told

          The rate at which heat is transferred is \frac{\r Q}{\r m } = -  30KJ/kg

the negative sign because the heat is transferred from the turbine

          The specific heat capacity of air is c_p = 1.1KJ/kg \cdot K

          The inlet temperature is  T_1 = 970K

          The outlet temperature is T_2 = 670K

           The pressure at the inlet of the turbine is p_1 = 400 kPa

          The pressure at the exist of the turbine is p_2 = 100kPa

           The temperature at outer surface is T_s = 315K

         The individual gas constant of air  R with a constant value R = 0.287kJ/kg \cdot K

The general equation for the turbine operating at steady state is \

               \r Q - \r W + \r m (h_1 - h_2) = 0

h is the enthalpy of the turbine and it is mathematically represented as          

        h = c_p T

The above equation becomes

             \r Q - \r W + \r m c_p(T_1 - T_2) = 0

              \frac{\r W}{\r m}  = \frac{\r Q}{\r m} + c_p (T_1 -T_2)

Where \r Q is the heat transfer from the turbine

           \r W is the work output from the turbine

            \r m is the mass flow rate of air

             \frac{\r W}{\r m} is the rate of work developed

Substituting values

              \frac{\r W}{\r m} =  (-30)+1.1(970-670)

                   \frac{\r W}{\r m}= 300kJ/kg

The general balance  equation for an entropy rate is represented mathematically as

                       \frac{\r Q}{T_s} + \r m (s_1 -s_2) + \sigma  = 0

          =>          \frac{\sigma}{\r m} = - \frac{\r Q}{\r m T_s} + (s_1 -s_2)

    generally (s_1 -s_2) = \Delta s = c_p\ ln[\frac{T_2}{T_1} ] + R \ ln[\frac{v_2}{v_1} ]

substituting for (s_1 -s_2)

                      \frac{\sigma}{\r m} = \frac{-\r Q}{\r m} * \frac{1}{T_s} +  c_p\ ln[\frac{T_2}{T_1} ] - R \ ln[\frac{p_2}{p_1} ]

                      Where \frac{\sigma}{\r m} is the rate of entropy produced within the turbine

 substituting values

                \frac{\sigma}{\r m} = - (-30) * \frac{1}{315} + 1.1 * ln\frac{670}{970} - 0.287 * ln [\frac{100kPa}{400kPa} ]

                    \frac{\sigma}{\r m}=  0.0861kJ/kg \cdot K

           

 

                   

   

5 0
4 years ago
A rigid tank contains 1 kg of oxygen (O2) at p1 = 35 bar, T1 = 180 K. The gas is cooled until the temperature drops to 150 K. De
andreyandreev [35.5K]

Answer:

a. Volume = 13.36 x 10^-3 m³ Pressure = 29.17 bar  b. Volume = 14.06 x 10^-3 m³ Pressure = 22.5 bar

Explanation:

Mass of O₂ = 1kg, Pressure (P1) = 35bar, T1= 180K, T2= 150k Molecular weight of O₂ = 32kg/Kmol

Volume of tank and final pressure using a)Ideal Gas Equation and b) Redlich - Kwong Equation

a. PV=mRT

V = {1 x (8314/32) x 180}/(35 x 10⁵) = 13.36 x 10^-3

Since it is a rigid tank the volume of the tank must remain constant and hnece we can say

T2/T1 = P2/P1, solving for P2

P2 = (150/180) x 35 = 29.17bar

b. P1 = {RT1/(v1-b)} - {a/v1(v1+b)(√T1)}

where R, a and b are constants with the values of, R = 0.08314bar.m³/kmol.K, a = 17.22(m³/kmol)√k, b = 0.02197m³/kmol

solving for v1

35 = {(0.08314 x 180)/(v1 - 0.02197)} - {17.22/(v1)(v1 + 0.02197)(√180)}

35 = {14.96542/(v1-0.02197)} - {1.2835/v1(v1 + 0.02197)}

Using Trial method to find v1

for v1 = 0.5

Right hand side becomes =  {14.96542/(0.5-0.02197)} - {1.2835/0.5(0.5 + 0.02197)} = 31.30 ≠ Left hand side

for v1 = 0.4

Right hand side becomes =  {14.96542/(0.4-0.02197)} - {1.2835/0.4(0.4 + 0.02197)} = 39.58 ≠ Left hand side

for v1 = 0.45

Right hand side becomes =  {14.96542/(0.45-0.02197)} - {1.2835/0.45(0.45 + 0.02197)} = 34.96 ≅ 35

Specific Volume = 35 m³/kmol

V = m x Vspecific/M = (1 x 0.45)/32 = 14.06 x 10^-3 m³

For Pressure P2, we know that v2= v1

P2 = {RT2/(v2-b)} - {a/v2(v2+b)(√T2)} = {(0.08314 x 150)/(0.45 - 0.02197)} - {17.22/(0.45)(0.45 + 0.02197)(√150)} = 22.5 bar

3 0
3 years ago
Other questions:
  • For this question, you will be provided with data related to the count of website sessions by day for the past one hundred days.
    6·1 answer
  • A Canadian visitor says that we have a great day in Chattanooga because it's 30 degrees. What would the temperature be in Farenh
    15·1 answer
  • What is 1000 kJ/sec in watts?
    10·1 answer
  • Determine the average and rms values for the function, y(t)=25+10sino it over the time periods (a) 0 to 0.1 sec and (b) 0 to 1/3
    9·1 answer
  • The 10mm diameter rod is made of Kevlar 49. Determine the change in
    7·1 answer
  • An equal-tangent sag vertical curve (with a negative initial and a positive final grade) is designed for 55 mi/h. The PVI is at
    5·1 answer
  • True or false <br> 19. Closed systems rely on feedback from outside of the system to operate.
    12·1 answer
  • I NEED HELP ASAP WILL AWARD BRAINLIEST
    8·2 answers
  • As a worker in this field you would:
    5·1 answer
  • Two technicians are discussing relays. Technician A says that relays can fail because the relay winding is open. Technician B sa
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!