Answer:
Explanation:
Run the code given in text file following instructions.
Answer:
peak flow and any engineering considerations related thereto
Explanation:
It should be no surprise that a peak flow meter will report peak flow, sometimes with important maximum-value, time-constant, or bandwidth limitations. There are many engineering issues related to flow rates. A peak flow meter can allow you to assess those issues with respect to the flows actually encountered.
Peak flow can allow you to assess adequacy of flow and whether there may be blockages or impediments to flow that reduce peak levels below expected values. An appropriate peak flow meter can help you assess the length of time that peak flow can be maintained, and whether that delivers sufficient volume.
It can also allow you to assess whether appropriate accommodation is made for unexpectedly high flow rates. (Are buffers or overflow tanks of sufficient size? Is there adequate protection against possible erosion? Is there adequate support where flow changes direction?)
Answer:
The amount of phase shift between input and output signal is important when measuring a common emitter amplifier circuit.
Explanation:
the amount of phase shift between input and output signal is important when measuring a common emitter amplifier circuit
In signal processing, phase distortion is change in the shape of the waveform, that occurs when the phase shift introduced by a circuit is not directly proportional to frequency.
In a common emitter amplifier circuit there is an 180-degree phase shift between the input and output waveforms.
It’s 50 percent 99 percent sure