Answer:
Velocity = 4.33[m/s]
Explanation:
The total energy or mechanical energy is the sum of the potential energy plus the kinetic energy, as it is known the velocity and the height, we can determine the total energy.
![E_{M}=E_{p} + E_{k} \\E_{p} = potential energy [J]\\E_{k} = kinetic energy [J]\\where:\\E_{p} =m*g*h\\E_{p} = 4*9.81*0.5=19.62[J]\\E_{k}=\frac{1}{2} *m*v^{2} \\E_{k}=\frac{1}{2} *4*(3)^{2} \\E_{k}=18[J]\\Therefore\\E_{M} =18+19.62\\E_{M}=37.62[J]](https://tex.z-dn.net/?f=E_%7BM%7D%3DE_%7Bp%7D%20%20%2B%20E_%7Bk%7D%20%5C%5CE_%7Bp%7D%20%3D%20potential%20energy%20%5BJ%5D%5C%5CE_%7Bk%7D%20%3D%20kinetic%20energy%20%5BJ%5D%5C%5Cwhere%3A%5C%5CE_%7Bp%7D%20%3Dm%2Ag%2Ah%5C%5CE_%7Bp%7D%20%3D%204%2A9.81%2A0.5%3D19.62%5BJ%5D%5C%5CE_%7Bk%7D%3D%5Cfrac%7B1%7D%7B2%7D%20%2Am%2Av%5E%7B2%7D%20%20%5C%5CE_%7Bk%7D%3D%5Cfrac%7B1%7D%7B2%7D%20%2A4%2A%283%29%5E%7B2%7D%20%5C%5CE_%7Bk%7D%3D18%5BJ%5D%5C%5CTherefore%5C%5CE_%7BM%7D%20%3D18%2B19.62%5C%5CE_%7BM%7D%3D37.62%5BJ%5D)
All this energy will become kinetic energy and we can find the velocity.
![37.62=\frac{1}{2} *m*v^{2} \\v=\sqrt{\frac{37.62*2}{4} } \\v=4.33[m/s]](https://tex.z-dn.net/?f=37.62%3D%5Cfrac%7B1%7D%7B2%7D%20%2Am%2Av%5E%7B2%7D%20%5C%5Cv%3D%5Csqrt%7B%5Cfrac%7B37.62%2A2%7D%7B4%7D%20%7D%20%5C%5Cv%3D4.33%5Bm%2Fs%5D)
<span>A measurement must include both a number and an unit of measurement.
</span>
Because the temperature causes it to go the physical change like if water is froze the temperate just caused it to go through another state of matter another example as if the ice got melted you would need high temperature to cause this change physically. Let me know if I help or if their is anything I can change for you to understand better
Answer:
3.0 seconds
Explanation:
We can solve the problem by considering the horizontal motion of the ball only. In fact, the ball moves by uniform motion (constant speed) along the horizontal direction, since there are no forces acting in this direction. The horizontal speed of the ball is given by:

and it does not change during the motion.
We also know that the ball travels a horizontal distance of d = 60 m, so we can find the time it takes to cover the distance by using the equation:

Answer:
Similarities between magnetic fields and electric fields: ... Magnetic fields are associated with two magnetic poles, north and south, although they are also produced by charges (but moving charges). Like poles repel; unlike poles attract. Electric field points in the direction of the force experienced by a positive charge ...
Explanation:
copied and pasted from google. I copied and pasted your question into google and got this exact answer
Here is another thing from the same website just not shortened:
Similarities between magnetic fields and electric fields:
- Electric fields are produced by two kinds of charges, positive and negative. Magnetic fields are associated with two magnetic poles, north and south, although they are also produced by charges (but moving charges).
- Like poles repel; unlike poles attract
- Electric field points in the direction of the force experienced by a positive charge. Magnetic field points in the direction of the force experienced by a north pole.
Differences between magnetic fields and electric fields:
- Positive and negative charges can exist separately. North and south poles always come together. Single magnetic poles, known as magnetic monopoles, have been proposed theoretically, but a magnetic monopole has never been observed.
- Electric field lines have definite starting and ending points. Magnetic field lines are continuous loops. Outside a magnet the field is directed from the north pole to the south pole. Inside a magnet the field runs from south to north.