not enough information is given to determine the velocity of the object at time to=0.00s
If there is no existence of capacitors in our world there would be no electrical or electronic engineering.
A capacitor is a device that stores electrical energy in an electric field. It has two terminals and is a passive electrical component. Capacitance refers to a capacitor's effect. A capacitor commonly referred to as a condenser is one of the fundamental parts needed to create electronic circuits. Without fundamental parts like resistors, inductors, diodes, transistors, etc., a circuit's design is incomplete or it won't work properly.
Energy storage is capacitors' most popular application. Power conditioning, signal coupling or decoupling, electronic noise filtering, and remote sensing are further applications. Capacitors are employed in a wide variety of industries and have integrated into daily life due to their numerous applications.
There are numerous significant uses for capacitors. They are employed in digital circuits, for instance, to prevent the loss of data saved in big computer memories during a brief loss of power. The electric energy held in such capacitors keeps the data from being lost during a brief power outage.
To know more about capacitors refer to: brainly.com/question/14126841
#SPJ9
Longer the air column is the more harmonics are created. due to the longer column the waves have more space to bounce off of the sides of the column to create more harmonics.
Answer:
C.) To indicate different versions of the same variable.
Explanation:
Variables in physics often include a subscript. These subscripts are used for indicating different versions of the same variable in physics.
Basically, subscripts are used to represent the beginning (initial) and ending (final) position or point of a variable in physics.
For example, we would look at Gay Lussac' Law of gases.
Gay Lussac law states that when the volume of an ideal gas is kept constant, the pressure of the gas is directly proportional to the absolute temperature of the gas.
Mathematically, Gay Lussac's law is given by;


Where;
represents the initial temperature.
represents the initial temperature.
represents the initial pressure.
represents the initial pressure.
Note: 1 and 2 are the subscript while T and P are the variables.
Momentum = (mass) x (speed)
If the speed is zero, then the momentum is zero.