1. calculate the value of acceleration that objects gains in that period of time
•calculating acceleration
5.50 = 1/2at^2
5.50*2/t^2 = a
11.00/0.657 = a
16.74=a
now you got the acceleration
2. you have laws of gravitation for that
g = Gm/r^2
where g is the acceleration value
16.74 = 6.754*10^-11 × m/ 6.28*10^4
105.14*10^4 /6.754*10-11 = m
15.567*10^15 = m
that would be the mass of the planet ...
Answer:
<h2>0.5 m/s²</h2>
Explanation:
The acceleration of an object given it's mass and the force acting on it can be found by using the formula

From the question we have

We have the final answer as
<h3>0.5 m/s²</h3>
Hope this helps you
Answer:
x = A sin ω t describes the displacement of the particle
v = A ω cos ω t
a = -A ω^2 sin ω t
a (max) = -A ω^2 is the max acceleration (- can be ignored here)
ω = (K/ m)^1/2 for SHM
F = - K x^2 restoring force of spring
K = 4.34 / .0745^2 = 782 N / m
ω = (782 / .297)^1/2 = 51.3 / sec
a (max) = .0745 * 782 / .297 = 196 m / s^2
Answer:
Gravity and
Air resistance
Explanation:
The two forces acting on a skydiver are gravitational force and air resistance.
Gravitational force is a force that tends to pull all massive bodies towards the center of the earth. It works on all bodies that has mass. The larger or bigger the mass, the more the pull of gravity on the body.
Air resistance is the drag of air on a body as it passes to it. It is resisting force.
- When a sky diver jumps out of a plane, he/she encounters both gravity and air resistance.
- It soon balances both force and attain terminal velocity.
- Air resistance is a frictional force that opposes motion.
- This frictional force pushes in the opposite direction of motion
- Motion direction is downward due to the celerity caused by gravity.
The correct unit for the speed of light is [ m s⁻¹ ].
Time = (distance) / (speed)
Time = (9.3 x 10^7 miles) x (1609 m/mile) / (3 x 10^8 m/s) = 498.8 seconds .
That would be <em>8.31 minutes</em>.