1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
pav-90 [236]
3 years ago
5

A bullet of mass 11.1 g is fired into an initially stationary block and comes to rest in the block. The block, of mass 1.01 kg,

is subject to no horizontal external forces during the collision with the bullet. After the collision, the block is observed to move at a speed of 5.30 m/s.(a) Find the initial speed of the bullet.(b) How much kinetic energy is lost?
Physics
1 answer:
Kryger [21]3 years ago
8 0

Answer:

a) The initial speed of the bullet is 488 m/s

b) The loss of kinetic energy is 1.3 × 10³ J.

Explanation:

Hi there!

To solve this problem we have to use the conservation of momentum:

initial momentum of the bullet + initial momentum of the block =

final momentum of the block-bullet system

The momentum of an object is calculated as follows:

p = m · v

Where:

p = momentum

m = mass of the object.

v = velocity.

Then, in our system:

p₁₁ = initial momentum of the bullet.

p₂₁ = initial momentum of the block.

p₃₂ = final momentum of the block-bullet system.

p₁₁ + p₂₁ =  p₃₂

The initial momentum of the bullet will be:

p₁₁ = m · v

p₁₁ = 0.0111 kg · v

The initial momentum of the block will be:

p₂₁ = 1.01 kg · 0 m/s = 0 kg · m/s

The final momentum of the block-bullet system will be:

p₃₂ = (1.01 kg + 0.0111 kg) · 5.30 m/s

Then, by conservation of the momentum:

initial momentum of the bullet = momentum of the block-bullet system

0.0111 kg · v = (1.01 kg + 0.0111 kg) · 5.30 m/s

v = ((1.01 kg + 0.0111 kg) · 5.30 m/s)/ 0.0111 kg

v = 488 m/s

The initial speed of the bullet is 488 m/s

b) The initial kinetic energy (KE) of the system is the kinetic energy of the bullet because the block is at rest:

KE = 1/2 · m · v²

KE = 1/2 · 0.0111 kg · (488 m/s)²

KE = 1.32 × 10³ J

The final kinetic energy of the system will be the kinetic energy of the block-bullet system:

KE = 1/2 · (1.01 kg + 0.0111 kg) · (5.30 m/s)²

KE = 14.3 J

The loss of kinetic energy will be:

initial kinetic energy - final kinetic energy

1.32 × 10³ J - 14.3 J = 1.3 × 10³ J

The loss of kinetic energy is 1.3 × 10³ J.

You might be interested in
A coil with an inductance of 2.3 H and a resistance of 14 Ω is suddenly connected to an ideal battery with ε = 100 V. At 0.13 s
klemol [59]

Given Information:

Resistance = R = 14 Ω

Inductance = L = 2.3 H

voltage = V = 100 V

time = t = 0.13 s

Required Information:

(a) energy is being stored in the magnetic field

(b) thermal energy is appearing in the resistance

(c) energy is being delivered by the battery?

Answer:

(a) energy is being stored in the magnetic field ≈ 219 watts

(b) thermal energy is appearing in the resistance ≈ 267 watts

(c) energy is being delivered by the battery ≈ 481 watts

Explanation:

The energy stored in the inductor is given by

U = \frac{1}{2} Li^{2}

The rate at which the energy is being stored in the inductor is given by

\frac{dU}{dt} = Li\frac{di}{dt} \: \: \: \: eq. 1

The current through the RL circuit is given by

i = \frac{V}{R} (1-e^{-\frac{t}{ \tau} })

Where τ is the the time constant and is given by

\tau = \frac{L}{R}\\ \tau = \frac{2.3}{14}\\ \tau = 0.16

i = \frac{110}{14} (1-e^{-\frac{t}{ 0.16} })\\i = 7.86(1-e^{-6.25t})\\\frac{di}{dt} = 49.125e^{-6.25t}

Therefore, eq. 1 becomes

\frac{dU}{dt} = (2.3)(7.86(1-e^{-6.25t}))(49.125e^{-6.25t})

At t = 0.13 seconds

\frac{dU}{dt} = (2.3) (4.37) (21.8)\\\frac{dU}{dt} = 219.11 \: watts

(b) thermal energy is appearing in the resistance

The thermal energy is given by

P = i^{2}R\\P = (7.86(1-e^{-6.25t}))^{2} \cdot 14\\P = (4.37)^{2}\cdot 14\\P = 267.35 \: watts

(c) energy is being delivered by the battery?

The energy delivered by battery is

P = Vi\\P = 110\cdot 4.37\\P = 481 \: watts

4 0
3 years ago
How does the frequency of infrared electromagnetic waves compare with the frequency of radio and microwaves?
iVinArrow [24]

Answer:

Answer is B.

Because the wavelength of infrared is shorter than microwave radiation

8 0
3 years ago
A swing has a period of 10 seconds. What is its frequency ?
kow [346]

Frequency = 1 / (period)

Frequency = 1 / (10 seconds) = (1/10) ( / second) = 0.1 per second = <em>0.1 Hz</em>.


4 0
3 years ago
An ambulance driver traveling at 31.0 m/s (69.3 mph) honks his horn as he sees a motorist ahead on the highway traveling in the
IrinaVladis [17]

Answer:

fo = 378.52Hz

Explanation:

Using Doppler effect formula:

f'=\frac{C-Vb}{C-Va}*fo

where

f' = 392 Hz

C = 340m/s

Vb = 20m/s

Va = 31m/s

Replacing these values and solving for fo:

fo = 378.52Hz

4 0
3 years ago
If all this energy is added to 50 kg of water (the amount of water in a 165-lb person) at 37 ∘C, what is the final state of the
Reika [66]

Answer:

Vapors

Explanation:

We take into account that all the energy from the lightning has been transformed into steam.

\Delta U = Q -  W\\Q = mC \Delta T\\Q = mL

We calculate the amount of energy required by water to convert into steam.

Q_{water} = 50 \times \times 4180 \times (100-37)\\= 1.132 \times 10^7 \ J

Q_{change\ to\ steam} = 50 \times 2.256 \times 106 \\= 1.128 \times 10^8 \ J

Q_{total} = 1.132 \times 10^7 + 1.128 \times 10^8\\= 1.126 \times 10^8 \ J

From the lightning we received 10^{10} \ J of energy, out of which 1.126 \times 10^8 has been used to convert the water into steam.

Energy left = 10^{10} - 1.126 \times 10^8 = 9.88 \times 10^9 \ J

We use this energy to convert steam into vapors.

Q = \Delta E

Q = \Delta E = mc (T_{f} - T{i})\\T_{f} = \frac {\Delta E}{mc} + T_{i}\\ \\T_{f} = 100 + \frac{9.88 \times 10^{10}}{50 \times 1970}\\T_{f} = 100 + 10^8\\T_{f} = 10 ^{ \ 8} \ {^ \circ } C

With this temperature, we can easily interpret that the vapors will be dissociated in hydrogen and oxygen particles.

5 0
3 years ago
Other questions:
  • What is the name of the process that involves a strong attractive force that keeps atoms together
    7·2 answers
  • Wind erosion can be reduced by _____.
    14·1 answer
  • Which shows evidence of active transport?
    13·2 answers
  • Which one of the following is NOT an evidence of the Big Bang Theory? A. most objects in space are moving away from one another
    14·1 answer
  • The energy flow per unit time per unit area (S) of an electromagnetic wave has an average value of 440 mW/m2. The maximum value
    7·1 answer
  • If the moon's acceleration due to gravity caused by its gravitational field is one-sixth that of the earth, what is its accelera
    5·1 answer
  • What is air masses? And 5 effect of it​
    14·1 answer
  • Which of these have an elliptical orbit around the sun?
    7·2 answers
  • Is every section of the chromosome active? Why or why not?
    12·2 answers
  • A rope is shaken and produces 7 waves each second. Calculate the time period of the rope waves.
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!