Answer:
The answer to your question is butanal
Explanation:
To name this compound we must consider:
1.- Identify the functional group. The functional group of this molecule is the first carbon to the right and its oxygen.
When carbon is attached to oxygen is a border, this functional group is called Aldehyde.
2.- Count the total number of carbons starting from the right. This molecule has 4 carbons.
3.- Name the compound
An organic molecule with 4 carbons is called butane but change the ending for al, then the name will be butanal
The balanced chemical reaction would be:
KHC8H4O4<span> (aq) + </span>NaOH<span> (aq) → NaKC8H4O4 (aq) + H2O.
The concentration of the NaOH is equal 0.1 M. We use this and the volume given above to determine the mass of KH</span>C8H4O4. We do as follows:
0.1 mol / L NaOH (.015 L) ( 1 mol KHC8H4O4 / 1 mol NaOH) (204 g / 1 mol) = 0.306 g KHC8H4O4
In order to find the answer, use an ICE chart:
Ca(IO3)2...Ca2+......IO3-
<span>some.......0..........0 </span>
<span>less.......+x......+2x </span>
<span>less........x.........2x
</span>
<span>Ca(IO₃)₂ ⇄ Ca⁺² + 2 IO⁻³
</span>
K sp = [Ca⁺²][IO₃⁻]²
K sp = (x) (2 x)² = 4 x³
7.1 x 10⁻⁷ = 4 x³
<span>x = molar solubility = 5.6 x 10</span>⁻³ M
The answer is 5.6 x 10 ^ 3 M. (molar solubility)
Answer:
if the density is higher than water than the object will sink
Explanation:
<u>Answer:</u> The equation to calculate the mass of remaining isotope is ![[A]=\frac{20}{10^{-0.217t}}](https://tex.z-dn.net/?f=%5BA%5D%3D%5Cfrac%7B20%7D%7B10%5E%7B-0.217t%7D%7D)
<u>Explanation:</u>
The equation used to calculate rate constant from given half life for first order kinetics:

where,
= half life of the reaction = 
Putting values in above equation, we get:

Rate law expression for first order kinetics is given by the equation:
![k=\frac{2.303}{t}\log\frac{[A_o]}{[A]}](https://tex.z-dn.net/?f=k%3D%5Cfrac%7B2.303%7D%7Bt%7D%5Clog%5Cfrac%7B%5BA_o%5D%7D%7B%5BA%5D%7D)
where,
k = rate constant = 
t = time taken for decay process
= initial amount of the sample = 20 grams
[A] = amount left after decay process = ? grams
Putting values in above equation, we get:
![0.5=\frac{2.303}{t}\log\frac{20}{[A]}](https://tex.z-dn.net/?f=0.5%3D%5Cfrac%7B2.303%7D%7Bt%7D%5Clog%5Cfrac%7B20%7D%7B%5BA%5D%7D)
![[A]=\frac{20}{10^{-0.217t}}](https://tex.z-dn.net/?f=%5BA%5D%3D%5Cfrac%7B20%7D%7B10%5E%7B-0.217t%7D%7D)
Hence, the equation to calculate the mass of remaining isotope is ![[A]=\frac{20}{10^{-0.217t}}](https://tex.z-dn.net/?f=%5BA%5D%3D%5Cfrac%7B20%7D%7B10%5E%7B-0.217t%7D%7D)