Answer:
Explanation:
If the energy of an atom is increased, an electron in the atom gets excited. To go back to its ground state, the electron releases energy. The energy of the light released when an electron drops in energy level is the same as the difference in energy between the two levels.
Viewed simply, electrons are arranged in shells around an atom’s nucleus. Electrons closest to the nucleus will have the lowest energy. Electrons further away from the nucleus will have higher energy. An atom’s electron shell can accommodate 2n2 electrons (where n is the shell level).
In a more realistic model, electrons move in atomic orbitals, or subshells. There are four different orbital shapes: s, p, d, and f. Within each shell, the s subshell is at a lower energy than the p. An orbital diagram is used to determine an atom’s electron configuration.
There are guidelines for determining the electron configuration of an atom. An electron will move to the orbital with lowest energy. Each orbital can hold only one electron pair. Electrons will separate as much as possible within a shell.
The state of energy that is forbidden is 2p orbital. The correct option is b).
<h3>
What is the energy state of electrons?</h3>
The energy state of an electron depends upon the presence of the electron on the orbitals. Lower the energy they will be in the lower orbital. When they get higher energy they move to the higher orbital.
By using the Selection Rules for Electron Transitions
1.) ?l = +/- 1 and
2.) ?m = 0, +/- 1
The conservation of angular momentum is required by these laws. A photon's inherent angular momentum is 1. As 4p is higher than 2p and the electron is lowering its energy. So, it will go down to 2p orbital.
Thus, the correct option is b). 2p orbital.
The question is incomplete. Your full question is given below:
a) 3d
b) 2p
c) 1s
d) 2s
To learn more about the energy state of electrons, refer to the link:
brainly.com/question/4138621
#SPJ4
Answer:
Since energy can’t be created or destroyed, and water loses potential energy when it freezes to form ice. The energy remains electrical but then changes to kinetic when Enough energy is released.
Explanation: