Answer:
P₂ = 5000 KPa
Explanation:
Given data:
Initial volume = 2.00 L
Initial pressure = 50.0 KPa
Final volume = 20.0 mL (20/1000=0.02 L)
Final pressure = ?
Solution:
The given problem will be solved through the Boly's law,
"The volume of given amount of gas is inversely proportional to its pressure by keeping the temperature and number of moles constant"
Mathematical expression:
P₁V₁ = P₂V₂
P₁ = Initial pressure
V₁ = initial volume
P₂ = final pressure
V₂ = final volume
Now we will put the values in formula,
P₁V₁ = P₂V₂
50.0 KPa × 2.00L = P₂ × 0.02 L
P₂ = 100 KPa. L/0.02 L
P₂ = 5000 KPa
Answer:
d.) It is a binary molecular compound.
Explanation:
The compound in question has a formula
. The compound is not acidic in nature and the element 'M' is not a metal. This shows that the compound does not contain any metal. Based on the definition of a binary molecular compound as a compound comprising elements that are not metals. Therefore, the compound is obviously a binary molecular compound.
<u>Answer:</u> The number of moles of weak acid is
moles.
<u>Explanation:</u>
To calculate the moles of KOH, we use the equation:

We are given:
Volume of solution = 43.81 mL = 0.04381 L (Conversion factor: 1L = 1000 mL)
Molarity of the solution = 0.0969 moles/ L
Putting values in above equation, we get:

The chemical reaction of weak monoprotic acid and KOH follows the equation:

By Stoichiometry of the reaction:
1 mole of KOH reacts with 1 mole of weak monoprotic acid.
So,
of KOH will react with =
of weak monoprotic acid.
Hence, the number of moles of weak acid is
moles.