Answer:
x y
15 -1
12 0
9 1
6 2
3 3
0 4
Step-by-step explanation:
This is a function table. For a linear function, find the average rate of change between the listed points called slope. Then use the slope to fill in other inputs and outputs for the function.

This means for every 3 units made in the input, the function moves down 1 output.
x y
15 -1
12 0
9 1
6 2
3 3
0 4
1) The function is
3(x + 2)³ - 32) The
end behaviour is the
limits when x approaches +/- infinity.3) Since the polynomial is of
odd degree you can predict that
the ends head off in opposite direction. The limits confirm that.
4) The limit when x approaches negative infinity is negative infinity, then
the left end of the function heads off downward (toward - ∞).
5) The limit when x approaches positive infinity is positivie infinity, then
the right end of the function heads off upward (toward + ∞).
6) To graph the function it is important to determine:
- x-intercepts
- y-intercepts
- critical points: local maxima, local minima, and inflection points.
7)
x-intercepts ⇒ y = 0⇒ <span>
3(x + 2)³ - 3 = 0 ⇒ (x + 2)³ - 1 = 0
</span>
<span>⇒ (x + 2)³ = -1 ⇒ x + 2 = 1 ⇒
x = - 1</span>
8)
y-intercepts ⇒ x = 0y = <span>3(x + 2)³ - 3 =
3(0 + 2)³ - 3 = 0 - 3×8 - 3 = 24 - 3 =
21</span><span>
</span><span>
</span><span>9)
Critical points ⇒ first derivative = 0</span><span>
</span><span>
</span><span>i) dy / dx = 9(x + 2)² = 0
</span><span>
</span><span>
</span><span>⇒ x + 2 = 0 ⇒
x = - 2</span><span>
</span><span>
</span><span>ii)
second derivative: to determine where x = - 2 is a local maximum, a local minimum, or an inflection point.
</span><span>
</span><span>
</span><span>
y'' = 18 (x + 2); x = - 2 ⇒ y'' = 0 ⇒ inflection point.</span><span>
</span><span>
</span><span>Then the function does not have local minimum nor maximum, but an
inflection point at x = -2.</span><span>
</span><span>
</span><span>Using all that information you can
graph the function, and I
attache the figure with the graph.
</span>
It would fall between 6 and 7.