Answer:
2.387 mol/L
Explanation:
The reaction that takes place is:
- 2HCl + Ba(OH)₂ → BaCl₂ + 2H₂O
First we <u>calculate how many moles of each reagent were added</u>:
- HCl ⇒ 200.0 mL * 3.85 M = 203.85 mmol HCl
- Ba(OH)₂ ⇒ 100.0 mL * 4.6 M = 460 mmol Ba(OH)₂
460 mmol of Ba(OH)₂ would react completely with (2*460) 920 mmol of HCl. There are not as many mmoles of HCl so Ba(OH)₂ will remain in excess.
Now we <u>calculate how many moles of Ba(OH)₂ reacted</u>, by c<em>onverting the total number of HCl moles to Ba(OH)₂ moles</em>:
- 203.85 mmol HCl *
= 101.925 mmol Ba(OH)₂
This means the remaining Ba(OH)₂ is:
- 460 mmol - 101.925 mmol = 358.075 mmoles Ba(OH)₂
There are two OH⁻ moles per Ba(OH)₂ mol:
- OH⁻ moles = 2 * 358.075 = 716.15 mmol OH⁻
Finally we <u>divide the number of OH⁻ moles by the </u><u><em>total</em></u><u> volume</u> (100 mL + 200 mL):
- 716.15 mmol OH⁻ / 300.0 mL = 2.387 M
So the answer is 2.387 mol/L
A: 12 N
B: 150 N
C: 100 N
D: 150 N
E: 220 N
Answer:
Breathing air with a high concentration of CO reduces the amount of oxygen that can be transported in the blood stream to critical organs like the heart and brain. At very high levels, which are possible indoors or in other enclosed environments, CO can cause dizziness, confusion, unconsciousness and death.
Explanation:
Answer: 0.20 M
Explanation:
According to the dilution law,

where,
= molarity of stock solution = 1.40 M
= volume of stock solution = 72.0 ml
= molarity of diluted solution = m
= volume of diluted solution = 248 ml


Now 124 mL portion of this prepared solution is diluted by adding 133 mL of water.
According to the dilution law,

where,
= molarity of stock solution = 0.41 M
= volume of stock solution = 124 ml
= molarity of diluted solution = m
= volume of diluted solution = (124 +133) ml = 257 ml


Thus the final concentration of the solution is 0.20 M.
Answer:
Explanation:
No moraculos si a minha memoria não me trai acho temus 2tomos d carbono