The sender is seven hundred ajdhfkandhf
Answer:
<u><em>canvases over weeks
</em></u>
<u><em>
</em></u>
<u><em>Step-by-step explanation:
</em></u>
<u><em>
</em></u>
<u><em>Given:
</em></u>
<u><em>
</em></u>
<u><em>w(h) represents how many hours per week
</em></u>
<u><em>
</em></u>
<u><em>c(t) approximates how many canvases she paints per hour
</em></u>
<u><em>
</em></u>
<u><em>In function composition, if we have two function f(x) and g(x) then
</em></u>
<u><em>
</em></u>
<u><em>(f.g)(x) or f(g(x)) means first apply g(), then apply f() i.e. applying function f to the results of function g.
</em></u>
<u><em>
</em></u>
<u><em>Now we have c(w(h)), this means first we apply w(h) which will give us hours per week and then we'll apply function 'c' on the results of 'w' (that is number of hours for weeks painted). As result we'll get number of canvas </em></u>per week!
In one revolution of the wheel, a point on the edge travels a distance equal to the circumference of the wheel.
The wheel has radius 1 ft, so its circumference is 2π (1 ft) = 2π ft.
Then the point has a linear speed of
(1/4 rev/s) * (2π ft/rev) = 2π/4 ft/s = π/2 ft/s
Answer:
C) 
Step-by-step explanation:
