"The solubility of gases decreases as temperature rises" statements about trends in solubility is accurate.
<u>Option: D</u>
<u>Explanation:</u>
A substance's solubility is the quantity of that component that is needed at a defined degree of temperature to produce a saturated solution in any set quantity of solvent. Some compounds like hydrochloric acid, ammonia, etc have solubility that reduces with rising temperature. They are both standard-pressure gases.
When heating a solvent with a gas absorbed in it, both the solvent and the solute spike in the kinetic energy.When the gaseous solute's kinetic energy rises, the molecules have a higher propensity to overcome the solvent molecules' connection and migrate to the gas phase. Thus, a gas's solubility reduces with rising temperature.
(4) C-14 Carbon is found in all living organisms.
Answer:
21091mg of aspirin the person need to consume
Explanation:
To solve this question we must find the mass of the person in kg. Knowing the lethal dose for aspirin is 400mg/kg of person, we can find the amount of aspirin that the person need to consume to get a lethal dose:
<em>Mass person:</em>
116lb * (1kg / 2.2lb) = 52.7kg
<em>Lethal dose:</em>
52.7kg * (400mg / kg) =
<h3>21091mg of aspirin the person need to consume</h3>
Answer:
Approximately .
Explanation:
Balanced equation for this reaction:
.
Look up the relative atomic mass of elements in the limiting reactant, , as well as those in the product of interest, :
Calculate the formula mass for both the limiting reactant and the product of interest:
.
.
Calculate the quantity of the limiting reactant () available to this reaction:
.
Refer to the balanced equation for this reaction. The coefficients of the limiting reactant () and the product () are both . Thus:
.
In other words, for every of formula units that are consumed, of formula units would (in theory) be produced. Thus, calculate the theoretical yield of in this experiment:
.
Calculate the theoretical yield of this experiment in terms of the mass of expected to be produced:
.
Given that the actual yield in this question (in terms of the mass of ) is , calculate the percentage yield of this experiment:
.